Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Case report

Case report: rapid and durable response to PDGFR targeted therapy in a child with refractory multiple infantile myofibromatosis and a heterozygous germline mutation of the PDGFRB gene

Authors: Peter Mudry, Ondrej Slaby, Jakub Neradil, Jana Soukalova, Kristyna Melicharkova, Ondrej Rohleder, Marta Jezova, Anna Seehofnerova, Elleni Michu, Renata Veselska, Jaroslav Sterba

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

Infantile myofibromatosis belongs to a family of soft tissue tumors. The majority of these tumors have benign behavior but resistant and malignant courses are known, namely in tumors with visceral involvement. The standard of care is surgical resection. Observations suggest that low dose chemotherapy is beneficial. The treatment of resistant or relapsed patients with multifocal disease remains challenging. Patients that harbor an actionable mutation in the kinase domain are potential subjects for targeted tyrosine kinase inhibitor therapy.

Case presentation

An infant boy with inborn generalized infantile myofibromatosis that included bone, intracranial, soft tissue and visceral involvement was treated according to recent recommendations with low dose chemotherapy. The presence of a partial but temporary response led to a second line of treatment with six cycles of chemotherapy, which achieved a partial response again but was followed by severe toxicity. The generalized progression of the disease was observed later. Genetic analyses were performed and revealed a PDGFRB gene c.1681C>A missense heterozygous germline mutation, high PDGFRβ phosphokinase activity within the tumor and the heterozygous germline Slavic Nijmegen breakage syndrome 657del5 mutation in the NBN gene. Targeted treatment with sunitinib, the PDGFRβ inhibitor, plus low dose vinblastine led to an unexpected and durable response without toxicities or limitations to daily life activities. The presence of the Slavic NBN gene mutation limited standard chemotherapy dosing due to severe toxicities. Sister of the patient suffred from skull base tumor with same genotype and histology. The same targeted therapy led to similar quick and durable response.

Conclusion

Progressive and resistant incurable infantile myofibromatosis can be successfully treated with the new approach described herein. Detailed insights into the biology of the patient’s tumor and genome are necessary to understand the mechanisms of activity of less toxic and effective drugs except for up to date population-based chemotherapy regimens.
Appendix
Available only for authorised users
Literature
1.
go back to reference Levine E, Fréneaux P, Schleiermacher G, Brisse H, Pannier S, Teissier N, et al. Risk-adapted therapy for infantile myofibromatosis in children. Pediatr Blood Cancer. 2012;59:115–20.CrossRefPubMed Levine E, Fréneaux P, Schleiermacher G, Brisse H, Pannier S, Teissier N, et al. Risk-adapted therapy for infantile myofibromatosis in children. Pediatr Blood Cancer. 2012;59:115–20.CrossRefPubMed
2.
go back to reference Johnson K, Notrica DM, Carpentieri D, Jaroszewski D, Henry MM. Successful treatment of recurrent pediatric inflammatory myofibroblastic tumor in a single patient with a novel chemotherapeutic regimen containing celecoxib. J Pediatr Hematol Oncol. 2013;35:414–6.CrossRefPubMed Johnson K, Notrica DM, Carpentieri D, Jaroszewski D, Henry MM. Successful treatment of recurrent pediatric inflammatory myofibroblastic tumor in a single patient with a novel chemotherapeutic regimen containing celecoxib. J Pediatr Hematol Oncol. 2013;35:414–6.CrossRefPubMed
3.
go back to reference Auriti C, Kieran MW, Deb G, Devito R, Pasquini L, Danhaive O. Remission of infantile generalized myofibromatosis after interferon alpha therapy. J Pediatr Hematol Oncol. 2008;30:179–81.CrossRefPubMed Auriti C, Kieran MW, Deb G, Devito R, Pasquini L, Danhaive O. Remission of infantile generalized myofibromatosis after interferon alpha therapy. J Pediatr Hematol Oncol. 2008;30:179–81.CrossRefPubMed
4.
go back to reference Ferrari A, Alaggio R, Meazza C, Chiaravalli S, de Pava MV, Casanova M, et al. Fibroblastic tumors of intermediate malignancy in childhood. Expert Rev Anticancer Ther. 2013;13:225–36.CrossRefPubMed Ferrari A, Alaggio R, Meazza C, Chiaravalli S, de Pava MV, Casanova M, et al. Fibroblastic tumors of intermediate malignancy in childhood. Expert Rev Anticancer Ther. 2013;13:225–36.CrossRefPubMed
5.
go back to reference Butrynski JE, D’Adamo DR, Hornick JL, Dal Cin P, Antonescu CR, Jhanwar SC, et al. Crizotinib in ALK -rearranged inflammatory myofibroblastic tumor. N Engl J Med. 2010;363:1727–33.CrossRefPubMedPubMedCentral Butrynski JE, D’Adamo DR, Hornick JL, Dal Cin P, Antonescu CR, Jhanwar SC, et al. Crizotinib in ALK -rearranged inflammatory myofibroblastic tumor. N Engl J Med. 2010;363:1727–33.CrossRefPubMedPubMedCentral
6.
go back to reference Lovly CM, Gupta A, Lipson D, Otto G, Brennan T, Chung CT, et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov. 2014;4:889–95.CrossRefPubMedPubMedCentral Lovly CM, Gupta A, Lipson D, Otto G, Brennan T, Chung CT, et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov. 2014;4:889–95.CrossRefPubMedPubMedCentral
7.
go back to reference Martignetti JA, Tian L, Li D, Ramirez MCM, Camacho-Vanegas O, Camacho SC, et al. Mutations in PDGFRB cause autosomal-dominant infantile myofibromatosis. Am J Hum Genet. 2013;92:1001–7.CrossRefPubMedPubMedCentral Martignetti JA, Tian L, Li D, Ramirez MCM, Camacho-Vanegas O, Camacho SC, et al. Mutations in PDGFRB cause autosomal-dominant infantile myofibromatosis. Am J Hum Genet. 2013;92:1001–7.CrossRefPubMedPubMedCentral
8.
go back to reference Jo J-C, Hong YS, Kim K-P, Lee J-L, Lee J, Park YS, et al. A prospective multicenter phase II study of sunitinib in patients with advanced aggressive fibromatosis. Invest New Drugs. 2014;32:369–76.CrossRefPubMed Jo J-C, Hong YS, Kim K-P, Lee J-L, Lee J, Park YS, et al. A prospective multicenter phase II study of sunitinib in patients with advanced aggressive fibromatosis. Invest New Drugs. 2014;32:369–76.CrossRefPubMed
9.
go back to reference Skubitz KM, Manivel JC, Clohisy DR, Frolich JW. Response of imatinib-resistant extra-abdominal aggressive fibromatosis to sunitinib: case report and review of the literature on response to tyrosine kinase inhibitors. Cancer Chemother Pharmacol. 2009;64:635–40.CrossRefPubMed Skubitz KM, Manivel JC, Clohisy DR, Frolich JW. Response of imatinib-resistant extra-abdominal aggressive fibromatosis to sunitinib: case report and review of the literature on response to tyrosine kinase inhibitors. Cancer Chemother Pharmacol. 2009;64:635–40.CrossRefPubMed
10.
go back to reference Skoda J, Neradil J, Zitterbart K, Sterba J, Veselska R. EGFR signaling in the HGG-02 glioblastoma cell line with an unusual loss of EGFR gene copy. Oncol Rep. 2014;31:480–7.PubMed Skoda J, Neradil J, Zitterbart K, Sterba J, Veselska R. EGFR signaling in the HGG-02 glioblastoma cell line with an unusual loss of EGFR gene copy. Oncol Rep. 2014;31:480–7.PubMed
11.
go back to reference Dewaele B, Floris G, Finalet-Ferreiro J, Fletcher CD, Coindre J-M, Guillou L, et al. Coactivated platelet-derived growth factor receptor and epidermal growth factor receptor are potential therapeutic targets in intimal sarcoma. Cancer Res. 2010;70:7304–14.CrossRefPubMed Dewaele B, Floris G, Finalet-Ferreiro J, Fletcher CD, Coindre J-M, Guillou L, et al. Coactivated platelet-derived growth factor receptor and epidermal growth factor receptor are potential therapeutic targets in intimal sarcoma. Cancer Res. 2010;70:7304–14.CrossRefPubMed
12.
go back to reference Ströbel P, Bargou R, Wolff A, Spitzer D, Manegold C, Dimitrakopoulou-Strauss A, et al. Sunitinib in metastatic thymic carcinomas: laboratory findings and initial clinical experience. Br J Cancer. 2010;103:196–200.CrossRefPubMedPubMedCentral Ströbel P, Bargou R, Wolff A, Spitzer D, Manegold C, Dimitrakopoulou-Strauss A, et al. Sunitinib in metastatic thymic carcinomas: laboratory findings and initial clinical experience. Br J Cancer. 2010;103:196–200.CrossRefPubMedPubMedCentral
13.
go back to reference Zhang Y-X, van Oosterwijk JG, Sicinska E, Moss S, Remillard SP, van Wezel T, et al. Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy. Clin Cancer Res. 2013;19:3796–807.CrossRefPubMed Zhang Y-X, van Oosterwijk JG, Sicinska E, Moss S, Remillard SP, van Wezel T, et al. Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy. Clin Cancer Res. 2013;19:3796–807.CrossRefPubMed
14.
go back to reference Arts FA, Chand D, Pecquet C, Velghe AI, Constantinescu S, Hallberg B, et al. PDGFRB mutants found in patients with familial infantile myofibromatosis or overgrowth syndrome are oncogenic and sensitive to imatinib. Oncogene. 2015. doi:10.1038/onc.2015.383.PubMed Arts FA, Chand D, Pecquet C, Velghe AI, Constantinescu S, Hallberg B, et al. PDGFRB mutants found in patients with familial infantile myofibromatosis or overgrowth syndrome are oncogenic and sensitive to imatinib. Oncogene. 2015. doi:10.​1038/​onc.​2015.​383.PubMed
15.
go back to reference Cheung YH, Gayden T, Campeau PM, LeDuc CA, Russo D, Nguyen V-H, et al. A recurrent PDGFRB mutation causes familial infantile myofibromatosis. Am J Hum Genet. 2013;92:996–1000.CrossRefPubMedPubMedCentral Cheung YH, Gayden T, Campeau PM, LeDuc CA, Russo D, Nguyen V-H, et al. A recurrent PDGFRB mutation causes familial infantile myofibromatosis. Am J Hum Genet. 2013;92:996–1000.CrossRefPubMedPubMedCentral
17.
go back to reference Jin S, Hansson EM, Tikka S, Lanner F, Sahlgren C, Farnebo F, et al. Notch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Circ Res. 2008;102:1483–91.CrossRefPubMed Jin S, Hansson EM, Tikka S, Lanner F, Sahlgren C, Farnebo F, et al. Notch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Circ Res. 2008;102:1483–91.CrossRefPubMed
18.
go back to reference Reynolds AR. Potential relevance of bell-shaped and u-shaped dose-responses for the therapeutic targeting of angiogenesis in cancer. Dose-response Publ Int Hormesis Soc. 2009;8:253–84. Reynolds AR. Potential relevance of bell-shaped and u-shaped dose-responses for the therapeutic targeting of angiogenesis in cancer. Dose-response Publ Int Hormesis Soc. 2009;8:253–84.
19.
go back to reference Reynolds AR, Hart IR, Watson AR, Welti JC, Silva RG, Robinson SD, et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med. 2009;15:392–400.CrossRefPubMed Reynolds AR, Hart IR, Watson AR, Welti JC, Silva RG, Robinson SD, et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med. 2009;15:392–400.CrossRefPubMed
21.
go back to reference Andre N, Cointe S, Barlogis V, Arnaud L, Lacroix R, Pasquier E, et al. Maintenance chemotherapy in children with ALL exerts metronomic-like thrombospondin-1 associated anti-endothelial effect. Oncotarget. 2015;6:23008–14.CrossRefPubMedPubMedCentral Andre N, Cointe S, Barlogis V, Arnaud L, Lacroix R, Pasquier E, et al. Maintenance chemotherapy in children with ALL exerts metronomic-like thrombospondin-1 associated anti-endothelial effect. Oncotarget. 2015;6:23008–14.CrossRefPubMedPubMedCentral
Metadata
Title
Case report: rapid and durable response to PDGFR targeted therapy in a child with refractory multiple infantile myofibromatosis and a heterozygous germline mutation of the PDGFRB gene
Authors
Peter Mudry
Ondrej Slaby
Jakub Neradil
Jana Soukalova
Kristyna Melicharkova
Ondrej Rohleder
Marta Jezova
Anna Seehofnerova
Elleni Michu
Renata Veselska
Jaroslav Sterba
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3115-x

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine