Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells

Authors: Pinki Nandi, Gannareddy V. Girish, Mousumi Majumder, Xiping Xin, Elena Tutunea-Fatan, Peeyush K. Lala

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

Lymphatic metastasis, facilitated by lymphangiogenesis is a common occurrence in breast cancer, the molecular mechanisms remaining incompletely understood. We had earlier shown that cyclooxygenase (COX)-2 expression by human or murine breast cancer cells promoted lymphangiogenesis and lymphatic metastasis by upregulating VEGF-C/D production by tumor cells or tumor-associated macrophages primarily due to activation of the prostaglandin receptor EP4 by endogenous PGE2. It is not clear whether tumor or host-derived PGE2 has any direct effect on lymphangiogenesis, and if so, whether EP4 receptors on lymphatic endothelial cells (LEC) play any role.

Methods

Here, we address these questions employing in vitro studies with a COX-2-expressing and VEGF-C/D-producing murine breast cancer cell line C3L5 and a rat mesenteric (RM) LEC line and in vivo studies in nude mice.

Results

RMLEC responded to PGE2, an EP4 agonist PGE1OH, or C3L5 cell-conditioned media (C3L5-CM) by increased proliferation, migration and accelerated tube formation on growth factor reduced Matrigel. Native tube formation by RMLEC on Matrigel was abrogated in the presence of a selective COX-2 inhibitor or an EP4 antagonist. Addition of PGE2 or EP4 agonist, or C3L5-CM individually in the presence of COX-2 inhibitor, or EP4 antagonist, restored tube formation, reinforcing the role of EP4 on RMLEC in tubulogenesis. These results were partially duplicated with a human dermal LEC (HMVEC-dLyAd) and a COX-2 expressing human breast cancer cell line MDA-MB-231. Knocking down EP4 with shRNA in RMLEC abrogated their tube forming capacity on Matrigel in the absence or presence of PGE2, EP4 agonist, or C3L5-CM. RMLEC tubulogenesis following EP4 activation by agonist treatment was dependent on PI3K/Akt and Erk signaling pathways and VEGFR-3 stimulation. Finally in a directed in vivo lymphangiogenesis assay (DIVLA) we demonstrated the lymphangiogenic as well as angiogenic capacity of PGE2 and EP4 agonist in vivo.

Discussion/conclusions

These results demonstrate the roles of tumor as well as host-derived PGE2 in inducing lymphangiogenesis, at least in part, by activating EP4 and VEGFR-3 on LEC. EP4 being a common target on both tumor and host cells contributing to tumor-associated lymphangiogenesis reaffirms the therapeutic value of EP4 antagonists in the intervention of lymphatic metastasis in breast cancer.
Literature
1.
go back to reference Schlag PM, Veronesi U. Recent results in cancer research: lymphatic metastasis and sentinel lymphonodectomy. New York: Springer; 2000. Schlag PM, Veronesi U. Recent results in cancer research: lymphatic metastasis and sentinel lymphonodectomy. New York: Springer; 2000.
2.
go back to reference Wong SL, Chao C, Edwards MJ, Carlson DJ, Laidley A, Noyes RD, et al. Frequency of sentinel lymph node metastases in patients with favorable breast cancer histologic subtypes. Am J Surg. 2002;184(6):492–8.CrossRefPubMed Wong SL, Chao C, Edwards MJ, Carlson DJ, Laidley A, Noyes RD, et al. Frequency of sentinel lymph node metastases in patients with favorable breast cancer histologic subtypes. Am J Surg. 2002;184(6):492–8.CrossRefPubMed
3.
go back to reference Yasuda K, Inomata M, Fujii K, Shiraishi N, Adachi Y, Kitano S. Superficially Spreading Cancer of the Stomach. Ann Surg Oncol. 2002;9(2):192–6.CrossRefPubMed Yasuda K, Inomata M, Fujii K, Shiraishi N, Adachi Y, Kitano S. Superficially Spreading Cancer of the Stomach. Ann Surg Oncol. 2002;9(2):192–6.CrossRefPubMed
6.
go back to reference Izbicki JR, Passlick B, Hosch SB, Kubuschock B, Schneider C, Busch C, et al. Mode of spread in the early phase of lymphatic metastasis in non-small-cell lung cancer: significance of nodal micrometastasis. J Thorac Cardiovasc Surg. 1996;112:623–30.CrossRefPubMed Izbicki JR, Passlick B, Hosch SB, Kubuschock B, Schneider C, Busch C, et al. Mode of spread in the early phase of lymphatic metastasis in non-small-cell lung cancer: significance of nodal micrometastasis. J Thorac Cardiovasc Surg. 1996;112:623–30.CrossRefPubMed
7.
go back to reference Van Meurs H, Visser O, Buist MR, Ten Kate FJ, van der Velden J. Frequency of pelvic lymph node metastases and parametrial involvement in stage IA2 cervical cancer: a population-based study and literature review. Int J Gynecol Cancer. 2009;19(1):21–6. doi:10.1111/IGC.0b013e318197f3ef.CrossRefPubMed Van Meurs H, Visser O, Buist MR, Ten Kate FJ, van der Velden J. Frequency of pelvic lymph node metastases and parametrial involvement in stage IA2 cervical cancer: a population-based study and literature review. Int J Gynecol Cancer. 2009;19(1):21–6. doi:10.​1111/​IGC.​0b013e318197f3ef​.CrossRefPubMed
8.
go back to reference Bubendorf L, Schöpfer A, Wagner U, Sauter G, Moch H, Willi N, et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol. 2000;31(5):578–83.CrossRefPubMed Bubendorf L, Schöpfer A, Wagner U, Sauter G, Moch H, Willi N, et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol. 2000;31(5):578–83.CrossRefPubMed
9.
go back to reference Haller H, Mamula O, Krasevic M, Rupcic S, Fischer AB, Eminovic S, et al. Frequency and Distribution of Lymph Node Metastases in Epithelial Ovarian Cancer Significance of Serous Histology. Int J Gynecol Cancer. 2011;21:2.CrossRef Haller H, Mamula O, Krasevic M, Rupcic S, Fischer AB, Eminovic S, et al. Frequency and Distribution of Lymph Node Metastases in Epithelial Ovarian Cancer Significance of Serous Histology. Int J Gynecol Cancer. 2011;21:2.CrossRef
11.
go back to reference Bhattacharjee RN, Timoshenko AV, Cai J, et al. Relationship between cyclooxygenase-2 and human epidermal growth factor receptor 2 in vascular endothelial growth factor C up-regulation and lymphangiogenesis in human breast cancer. Cancer Sci. 2010;101:2026–32.CrossRefPubMed Bhattacharjee RN, Timoshenko AV, Cai J, et al. Relationship between cyclooxygenase-2 and human epidermal growth factor receptor 2 in vascular endothelial growth factor C up-regulation and lymphangiogenesis in human breast cancer. Cancer Sci. 2010;101:2026–32.CrossRefPubMed
12.
go back to reference Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell. 2002;1:219–27.CrossRefPubMed Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell. 2002;1:219–27.CrossRefPubMed
16.
go back to reference Williams CS, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene. 1999;18:7908–16.CrossRefPubMed Williams CS, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene. 1999;18:7908–16.CrossRefPubMed
17.
go back to reference Wang MT, Honn KV, Nie D. Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rev. 2007;26:525–34.CrossRefPubMed Wang MT, Honn KV, Nie D. Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rev. 2007;26:525–34.CrossRefPubMed
18.
go back to reference Harris RE. COX-2 blockade in cancer prevention and therapy. Totowa: Humana Press; 2003. Harris RE. COX-2 blockade in cancer prevention and therapy. Totowa: Humana Press; 2003.
20.
go back to reference Lala PK, Parhar RS, Singh P. Indomethacin therapy abrogates the prostaglandin-mediated suppression of natural killer activity in tumor bearing mice and prevents tumor metastasis. Cell Immunol. 1986;99:108–18.CrossRefPubMed Lala PK, Parhar RS, Singh P. Indomethacin therapy abrogates the prostaglandin-mediated suppression of natural killer activity in tumor bearing mice and prevents tumor metastasis. Cell Immunol. 1986;99:108–18.CrossRefPubMed
21.
go back to reference Lala PK, Al-Mutter N, Orucevic A. Effects of chronic indomethacin therapy on the development and progression of spontaneous mammary tumors in C3H/HEJ mice. Int J Cancer. 1997;73:371–80.CrossRefPubMed Lala PK, Al-Mutter N, Orucevic A. Effects of chronic indomethacin therapy on the development and progression of spontaneous mammary tumors in C3H/HEJ mice. Int J Cancer. 1997;73:371–80.CrossRefPubMed
22.
go back to reference Rozic JG, Chakraborty C, Lala PK. Cyclooxygenase inhibitors retard murine mammary tumor progression by reducing tumor cell migration, invasiveness and angiogenesis. Int J Cancer. 2001;93:497–506.CrossRefPubMed Rozic JG, Chakraborty C, Lala PK. Cyclooxygenase inhibitors retard murine mammary tumor progression by reducing tumor cell migration, invasiveness and angiogenesis. Int J Cancer. 2001;93:497–506.CrossRefPubMed
23.
go back to reference Timoshenko AV, Xu G, Chakrabarti S, et al. Role of prostaglandin E2 receptors in migration of murine and human breast cancer cells. Exp Cell Res. 2003;289:265–74.CrossRefPubMed Timoshenko AV, Xu G, Chakrabarti S, et al. Role of prostaglandin E2 receptors in migration of murine and human breast cancer cells. Exp Cell Res. 2003;289:265–74.CrossRefPubMed
24.
go back to reference Timoshenko AV, Lala PK, Chakraborty C. PGE2-mediated upregulation of iNOS in murine breast cancer cells through the activation of EP4 receptors. Int J Cancer. 2004;108:384–9.CrossRefPubMed Timoshenko AV, Lala PK, Chakraborty C. PGE2-mediated upregulation of iNOS in murine breast cancer cells through the activation of EP4 receptors. Int J Cancer. 2004;108:384–9.CrossRefPubMed
25.
go back to reference Majumder M, Liu L, Gannareddy GV, Lala PK. Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions. Cancer Sci. 2014;105:1142–51. doi:10.1111/cas.12475.CrossRefPubMedPubMedCentral Majumder M, Liu L, Gannareddy GV, Lala PK. Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions. Cancer Sci. 2014;105:1142–51. doi:10.​1111/​cas.​12475.CrossRefPubMedPubMedCentral
26.
go back to reference Timoshenko AV, Chakraborty C, Wagner GF, et al. COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer. 2006;94:1154–63.CrossRefPubMedPubMedCentral Timoshenko AV, Chakraborty C, Wagner GF, et al. COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer. 2006;94:1154–63.CrossRefPubMedPubMedCentral
27.
go back to reference Xin X, Majumder M, Gannareddy GV, Mohindra V, Maruyama T, Lala PK. Targeting COX-2 and EP4 to control tumor growth, angiogenesis, lymphangiogenesis and metastasis to the lungs and lymph nodes in a breast cancer model. Lab Invest. 2012;92:1115–28. doi:10.1038/labinvest.2012.90.CrossRefPubMed Xin X, Majumder M, Gannareddy GV, Mohindra V, Maruyama T, Lala PK. Targeting COX-2 and EP4 to control tumor growth, angiogenesis, lymphangiogenesis and metastasis to the lungs and lymph nodes in a breast cancer model. Lab Invest. 2012;92:1115–28. doi:10.​1038/​labinvest.​2012.​90.CrossRefPubMed
28.
go back to reference Majumder M, Tutunea-Fatan E, Xin X, Rodriguez-Torres M, Torres-Garcia J, Wiebe R, et al. Co expression of alpha9beta1 integrin and VEGF-D confers lymphatic metastatic ability to a human breast cancer cell line MDA-MB-468LN. PLoS One. 2012;7, e35094.CrossRefPubMedPubMedCentral Majumder M, Tutunea-Fatan E, Xin X, Rodriguez-Torres M, Torres-Garcia J, Wiebe R, et al. Co expression of alpha9beta1 integrin and VEGF-D confers lymphatic metastatic ability to a human breast cancer cell line MDA-MB-468LN. PLoS One. 2012;7, e35094.CrossRefPubMedPubMedCentral
29.
go back to reference Majumder M, Xin X, Lala PK. A practical and sensitive method of quantitating lymphangiogenesis in vivo. Lab Invest. 2013;93:779–91.CrossRefPubMed Majumder M, Xin X, Lala PK. A practical and sensitive method of quantitating lymphangiogenesis in vivo. Lab Invest. 2013;93:779–91.CrossRefPubMed
30.
go back to reference Whitehurst B, Eversgerd C, Flister M, Bivens CM, Pickett B, Zawieja DC, Ran S. Molecular profile and proliferative responses of rat lymphatic endothelial cells in culture. Lymphat Res Biol. 2006;4(3):119–42.CrossRefPubMed Whitehurst B, Eversgerd C, Flister M, Bivens CM, Pickett B, Zawieja DC, Ran S. Molecular profile and proliferative responses of rat lymphatic endothelial cells in culture. Lymphat Res Biol. 2006;4(3):119–42.CrossRefPubMed
31.
go back to reference Lala PK, Parhar RS. Eradication of spontaneous and experimental adenocarcinoma metastases with chronic indomethacin and intermittent IL-2 therapy. Int J Cancer. 1993;54:677–84.CrossRefPubMed Lala PK, Parhar RS. Eradication of spontaneous and experimental adenocarcinoma metastases with chronic indomethacin and intermittent IL-2 therapy. Int J Cancer. 1993;54:677–84.CrossRefPubMed
32.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.CrossRefPubMed
33.
go back to reference Fujino H, Salvi S, Regan JW. Differential regulation of phosphorylation of the cAMP response element-binding protein after activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. Mol Pharmacol. 2005;68(1):251–9.PubMed Fujino H, Salvi S, Regan JW. Differential regulation of phosphorylation of the cAMP response element-binding protein after activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. Mol Pharmacol. 2005;68(1):251–9.PubMed
35.
go back to reference Pan MR, Hou MF, Chang HC, Hung WC. Cyclooxygenase-2 up-regulates CCR7 via EP2/EP4 receptor signaling pathways to enhance lymphatic invasion of breast cancer cells. J Biol Chem. 2008;283:11155–6.CrossRefPubMed Pan MR, Hou MF, Chang HC, Hung WC. Cyclooxygenase-2 up-regulates CCR7 via EP2/EP4 receptor signaling pathways to enhance lymphatic invasion of breast cancer cells. J Biol Chem. 2008;283:11155–6.CrossRefPubMed
38.
go back to reference Majumder M, Xin X, Liu L, Tutunea-Fatan E, Rodriguez-Torres M, Vincent K, et al. COX-2 Induces Breast Cancer Stem Cells via EP4/PI3K/AKT/NOTCH/WNT Axis. Stem Cells. 2016;34:2290–305.CrossRefPubMed Majumder M, Xin X, Liu L, Tutunea-Fatan E, Rodriguez-Torres M, Vincent K, et al. COX-2 Induces Breast Cancer Stem Cells via EP4/PI3K/AKT/NOTCH/WNT Axis. Stem Cells. 2016;34:2290–305.CrossRefPubMed
39.
go back to reference Fitzgerald GA. Coxibs and cardiovascular disease. N Engl J Med. 2004;35:1709–11.CrossRef Fitzgerald GA. Coxibs and cardiovascular disease. N Engl J Med. 2004;35:1709–11.CrossRef
40.
go back to reference Graham DJ. COX-2 inhibitors, other NSAIDs, and cardiovascular risk: the seduction of common sense. JAMA. 2006;296:1653–6.CrossRefPubMed Graham DJ. COX-2 inhibitors, other NSAIDs, and cardiovascular risk: the seduction of common sense. JAMA. 2006;296:1653–6.CrossRefPubMed
41.
go back to reference Kearney PM, Baigent C, Godwin J, et al. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ. 2006;332:1302–8.CrossRefPubMedPubMedCentral Kearney PM, Baigent C, Godwin J, et al. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ. 2006;332:1302–8.CrossRefPubMedPubMedCentral
43.
go back to reference Holt D, Ma X, Kundu N, Fulton A. Prostaglandin E2 (PGE2) suppresses Natural Killer cell function primarily through the PGE2 receptor EP4. Cancer Immunol Immunother. 2011;60(11):1577–86.CrossRefPubMedPubMedCentral Holt D, Ma X, Kundu N, Fulton A. Prostaglandin E2 (PGE2) suppresses Natural Killer cell function primarily through the PGE2 receptor EP4. Cancer Immunol Immunother. 2011;60(11):1577–86.CrossRefPubMedPubMedCentral
Metadata
Title
PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells
Authors
Pinki Nandi
Gannareddy V. Girish
Mousumi Majumder
Xiping Xin
Elena Tutunea-Fatan
Peeyush K. Lala
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-3018-2

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine