Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

Novel derivative of aminobenzenesulfonamide (3c) induces apoptosis in colorectal cancer cells through ROS generation and inhibits cell migration

Authors: Khayal Al-Khayal, Ahmed Alafeefy, Mansoor-Ali Vaali-Mohammed, Amer Mahmood, Ahmed Zubaidi, Omar Al-Obeed, Zahid Khan, Maha Abdulla, Rehan Ahmad

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

Colorectal cancer (CRC) is the 3rd most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown.

Methods

3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29.

Results

Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and −6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c release and PARP cleavage. The results further demonstrate that 3c inhibits cell migration by modulating EMT markers and inhibiting TGFβ-induced phosphorylation of Smad2 and Samd3.

Conclusions

Our findings thus demonstrate that 3c disrupts redox balance in colorectal cancer cells and support the notion that this agent may be effective for the treatment of colorectal cancer.
Appendix
Available only for authorised users
Literature
2.
go back to reference O’Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Institute. 2014;96:1420–5.CrossRef O’Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Institute. 2014;96:1420–5.CrossRef
4.
go back to reference Ponnurangam S, Standing D, Rangarajan P, Subramaniam D. Tandutinib inhibits the Akt/mTOR signaling pathway to inhibit colon cancer growth. Mol Cancer Ther. 2013;12:598–609.CrossRefPubMedPubMedCentral Ponnurangam S, Standing D, Rangarajan P, Subramaniam D. Tandutinib inhibits the Akt/mTOR signaling pathway to inhibit colon cancer growth. Mol Cancer Ther. 2013;12:598–609.CrossRefPubMedPubMedCentral
5.
go back to reference Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, Liu Q, et al. Isoliensinie induces apoptosis in triple negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579.CrossRefPubMedPubMedCentral Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, Liu Q, et al. Isoliensinie induces apoptosis in triple negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579.CrossRefPubMedPubMedCentral
7.
go back to reference Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.CrossRefPubMed Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.CrossRefPubMed
8.
9.
go back to reference Kim AD, et al. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis. 2013;4:e750.CrossRefPubMedPubMedCentral Kim AD, et al. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis. 2013;4:e750.CrossRefPubMedPubMedCentral
10.
go back to reference Kim JY, et al. Panaxydol induces apoptosis through an increased intracellular calcium level, activation of JNK and p38 MAPK and NADPH oxidase-dependent generation of reactive oxygen species. Apoptosis. 2011;16:347–58.CrossRefPubMed Kim JY, et al. Panaxydol induces apoptosis through an increased intracellular calcium level, activation of JNK and p38 MAPK and NADPH oxidase-dependent generation of reactive oxygen species. Apoptosis. 2011;16:347–58.CrossRefPubMed
11.
go back to reference Ramiro-Cortes Y, Guemez-Gamboa A, Moran J. Reactive oxygen species participate in the p38-mediated apoptosis induced by potassium deprivation and staurosporine in cerebellar granule neurons. Int J Biochem Cell Biol. 2011;43:1373–82.CrossRefPubMed Ramiro-Cortes Y, Guemez-Gamboa A, Moran J. Reactive oxygen species participate in the p38-mediated apoptosis induced by potassium deprivation and staurosporine in cerebellar granule neurons. Int J Biochem Cell Biol. 2011;43:1373–82.CrossRefPubMed
12.
go back to reference Hsieh CJ, et al. Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation. Free Radic Biol Med. 2014;67:159–70.CrossRefPubMed Hsieh CJ, et al. Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation. Free Radic Biol Med. 2014;67:159–70.CrossRefPubMed
13.
go back to reference Chetram MA, Bethea DA, Odero-Marah VA, Don-Salu-Hewage AS, Jones KJ, Hinton CV. ROS-mediated activation of AKT induces apoptosis via pVHL in prostate cancer cells. Mol Cell Biochem. 2013;376:63–71.CrossRefPubMedPubMedCentral Chetram MA, Bethea DA, Odero-Marah VA, Don-Salu-Hewage AS, Jones KJ, Hinton CV. ROS-mediated activation of AKT induces apoptosis via pVHL in prostate cancer cells. Mol Cell Biochem. 2013;376:63–71.CrossRefPubMedPubMedCentral
14.
go back to reference Hussain AR, Uddin S, Bu R, Khan OS, Ahmed SO, Ahmed M, et al. Resveratrol suppresses constitutive activation of AKT via generation of ROS and induces apoptosis in diffuse large B cell lymphoma cell lines. PLoS One. 2011;6:e24703.CrossRefPubMedPubMedCentral Hussain AR, Uddin S, Bu R, Khan OS, Ahmed SO, Ahmed M, et al. Resveratrol suppresses constitutive activation of AKT via generation of ROS and induces apoptosis in diffuse large B cell lymphoma cell lines. PLoS One. 2011;6:e24703.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Huang P, Feng L, OldhamEA KMJ, Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature. 2000;407:390–5.CrossRefPubMed Huang P, Feng L, OldhamEA KMJ, Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature. 2000;407:390–5.CrossRefPubMed
17.
go back to reference Pelicano H, Feng L, Zhou Y, et al. Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem. 2003;278:37832–9.CrossRefPubMed Pelicano H, Feng L, Zhou Y, et al. Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem. 2003;278:37832–9.CrossRefPubMed
18.
go back to reference TrachoothamD ZY, Zhang H, et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by h-phenylethyl isothiocyanate. Cancer Cell. 2006;10:241–52.CrossRef TrachoothamD ZY, Zhang H, et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by h-phenylethyl isothiocyanate. Cancer Cell. 2006;10:241–52.CrossRef
19.
go back to reference Alafeefy AM, Ahmad R, Abdulla M, Eldehna WM, Al-Tamimi AM, Abdel-Aziz HA, Al-Obaid O, et al. Development of certain new 2-substituted-quinazolin-4-yl-aminobenzenesulfonamide as potential antitumor agents. Eur J Med Chem. 2016;109:247–53.CrossRefPubMed Alafeefy AM, Ahmad R, Abdulla M, Eldehna WM, Al-Tamimi AM, Abdel-Aziz HA, Al-Obaid O, et al. Development of certain new 2-substituted-quinazolin-4-yl-aminobenzenesulfonamide as potential antitumor agents. Eur J Med Chem. 2016;109:247–53.CrossRefPubMed
20.
go back to reference Ahmad R, Raina D, Trivedi V, Ren J, Rajabi H, Kharbanda S, Kufe D. MUC1 oncoprotein activates the IkappaB kinase beta complex and constitutive NF-kappaB signaling. Nat Cell Biol. 2007;9:1419–27.CrossRefPubMedPubMedCentral Ahmad R, Raina D, Trivedi V, Ren J, Rajabi H, Kharbanda S, Kufe D. MUC1 oncoprotein activates the IkappaB kinase beta complex and constitutive NF-kappaB signaling. Nat Cell Biol. 2007;9:1419–27.CrossRefPubMedPubMedCentral
21.
go back to reference Yin J-J, Sharma S, Shumyak SP, Wang Z-W, Zhou Z-W, et al. Synthesis and biological evaluation of novel folic acid receptor-Targeted, b-Cyclodextrin-Based drug complexes for cancer treatment. PLOS One. 2013;8:e62289.CrossRefPubMedPubMedCentral Yin J-J, Sharma S, Shumyak SP, Wang Z-W, Zhou Z-W, et al. Synthesis and biological evaluation of novel folic acid receptor-Targeted, b-Cyclodextrin-Based drug complexes for cancer treatment. PLOS One. 2013;8:e62289.CrossRefPubMedPubMedCentral
22.
go back to reference Yin L, Kosugi M, Kufe D. Inhibition of the MUC1-C oncoprotein induces multiple myeloma cell death by down regulating TIGAR expression and depleting NADPH. Blood. 2012;119:810–6.CrossRefPubMedPubMedCentral Yin L, Kosugi M, Kufe D. Inhibition of the MUC1-C oncoprotein induces multiple myeloma cell death by down regulating TIGAR expression and depleting NADPH. Blood. 2012;119:810–6.CrossRefPubMedPubMedCentral
23.
go back to reference Xiao-Lan L, Zhou J, Zit-Liang C, Jing-Yuan C, Zhi-Rong C, Wee-Joo C. Prima-1met (APR-246) inhibits growth of colorectal cancer cell with different p53 status through distinct mechanisms. Oncotarget. 2015;6:36689–99. Xiao-Lan L, Zhou J, Zit-Liang C, Jing-Yuan C, Zhi-Rong C, Wee-Joo C. Prima-1met (APR-246) inhibits growth of colorectal cancer cell with different p53 status through distinct mechanisms. Oncotarget. 2015;6:36689–99.
24.
go back to reference Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffmann B, Reed JC. Tumor Suppresssor p53 is a regulator of bcl2 and bax gene expression in vitro and in vivo. Oncogene. 1994;9:1799–805.PubMed Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffmann B, Reed JC. Tumor Suppresssor p53 is a regulator of bcl2 and bax gene expression in vitro and in vivo. Oncogene. 1994;9:1799–805.PubMed
25.
go back to reference Wang Z, Li Y, Sarkar FH. Siganling mechanism(s) of reactive oxygen species in Epithelial to Mesenchymal Transition Reminiscent of cancer stem cells in tumor progression. Curr Stem Cell Res Ther. 2010;5:74–80.CrossRefPubMedPubMedCentral Wang Z, Li Y, Sarkar FH. Siganling mechanism(s) of reactive oxygen species in Epithelial to Mesenchymal Transition Reminiscent of cancer stem cells in tumor progression. Curr Stem Cell Res Ther. 2010;5:74–80.CrossRefPubMedPubMedCentral
27.
28.
go back to reference Yogosawa S, Yamada Y, Yasuda S, Sun Q, Takizawa K, Sakai T. Dehydrozingerone, a structural analogue of curcumin, induces cell-cycle arrest at the G2/M phase and accumulates intracellular ROS in HT-29 human colon cancer cells. J Nat Prod. 2012;75:2088–93.CrossRefPubMed Yogosawa S, Yamada Y, Yasuda S, Sun Q, Takizawa K, Sakai T. Dehydrozingerone, a structural analogue of curcumin, induces cell-cycle arrest at the G2/M phase and accumulates intracellular ROS in HT-29 human colon cancer cells. J Nat Prod. 2012;75:2088–93.CrossRefPubMed
29.
go back to reference Maillet A, Yadav S, Loo YL, Sachaphibulkij K, Pervaiz S. A novel Osmium-based compound targets the mitochondria and triggers ROS-dependent apoptosis in colon carcinoma. Cell Death Dis. 2013;6(4):185. Maillet A, Yadav S, Loo YL, Sachaphibulkij K, Pervaiz S. A novel Osmium-based compound targets the mitochondria and triggers ROS-dependent apoptosis in colon carcinoma. Cell Death Dis. 2013;6(4):185.
30.
go back to reference Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM. Mechanisms of cell death in oxidative stress. Antioxid Redox Signal. 2007;9:49–89.CrossRefPubMed Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM. Mechanisms of cell death in oxidative stress. Antioxid Redox Signal. 2007;9:49–89.CrossRefPubMed
31.
go back to reference Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192:1–5.CrossRefPubMed Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192:1–5.CrossRefPubMed
32.
33.
go back to reference Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (Dcm) in apoptosis; an update. Apoptosis. 2003;8:115–28.CrossRefPubMed Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (Dcm) in apoptosis; an update. Apoptosis. 2003;8:115–28.CrossRefPubMed
34.
go back to reference Behrend L, Henderson G, Zwacka RM. Reactive oxygen species in oncogenic transformation. Biochem Soc Trans. 2003;31:1441–4.CrossRefPubMed Behrend L, Henderson G, Zwacka RM. Reactive oxygen species in oncogenic transformation. Biochem Soc Trans. 2003;31:1441–4.CrossRefPubMed
35.
go back to reference Kang D, Hamasaki N. Mitochondrial oxidative stress and mitochondrial DNA. Clin Chem Lab Med. 2003;41:1281–8.CrossRefPubMed Kang D, Hamasaki N. Mitochondrial oxidative stress and mitochondrial DNA. Clin Chem Lab Med. 2003;41:1281–8.CrossRefPubMed
36.
go back to reference McDonald C, Winum J-Y, Supuran CT, Dedhar S. Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotargets. 2012;3(1):84–97. McDonald C, Winum J-Y, Supuran CT, Dedhar S. Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotargets. 2012;3(1):84–97.
37.
go back to reference Said HH, Hagemann C, Carta F, Katzer A, et al. Hypoxia induced CA9 inhibitory targeting by two different sulphonamide derivatives including Acetazolamide in human glioblastoma. Bioorg Med Chem. 2013;21(13):3949–57.CrossRefPubMed Said HH, Hagemann C, Carta F, Katzer A, et al. Hypoxia induced CA9 inhibitory targeting by two different sulphonamide derivatives including Acetazolamide in human glioblastoma. Bioorg Med Chem. 2013;21(13):3949–57.CrossRefPubMed
38.
go back to reference Gieling RG, Parker CA, De Costa LA. Inhibition of carbonic anhydrase activity modifies the toxicity of doxorubicin and melphalan in tumor cells in vitro. J Enzym Inhib Med Chem. 2013;28:360–9.CrossRef Gieling RG, Parker CA, De Costa LA. Inhibition of carbonic anhydrase activity modifies the toxicity of doxorubicin and melphalan in tumor cells in vitro. J Enzym Inhib Med Chem. 2013;28:360–9.CrossRef
39.
go back to reference Räisänen SR, Lehenkari P, Tasanen M, Rahkila P, Härkönen PL, Väänänen HK. Carbonic anhydrase III protects cells from hydrogen peroxide-induced apoptosis. FASEB J. 1999;13(3):513–22.PubMed Räisänen SR, Lehenkari P, Tasanen M, Rahkila P, Härkönen PL, Väänänen HK. Carbonic anhydrase III protects cells from hydrogen peroxide-induced apoptosis. FASEB J. 1999;13(3):513–22.PubMed
40.
go back to reference Zimmerman UJ, Wang P, Zhang X, Bogdanovich S, Forster R. Anti-oxidative response of carbonic anhydrase III in skeletal muscle. IUBMB Life. 2004;56(6):343–7.CrossRefPubMed Zimmerman UJ, Wang P, Zhang X, Bogdanovich S, Forster R. Anti-oxidative response of carbonic anhydrase III in skeletal muscle. IUBMB Life. 2004;56(6):343–7.CrossRefPubMed
41.
go back to reference Truppo E, Supuran CT, Sandomenico A, Vullo D, Innocenti A, Di Fiore A, Alterio V, De Simone G, Monti SM. Carbonic anhydrase VII is S-glutathionylated without loss of catalytic activity and affinity for sulfonamide inhibitors. Bioorg Med Chem Lett. 2012;22(4):1560–4.CrossRefPubMed Truppo E, Supuran CT, Sandomenico A, Vullo D, Innocenti A, Di Fiore A, Alterio V, De Simone G, Monti SM. Carbonic anhydrase VII is S-glutathionylated without loss of catalytic activity and affinity for sulfonamide inhibitors. Bioorg Med Chem Lett. 2012;22(4):1560–4.CrossRefPubMed
42.
go back to reference Del Giudice R, Monti DM, Truppo E, Arciello A, Supuran CT, De Simone G, Monti SM. Human carbonic anhydrase VII protects cells from oxidative damage. Biol Chem. 2013;394(10):1343–8.PubMed Del Giudice R, Monti DM, Truppo E, Arciello A, Supuran CT, De Simone G, Monti SM. Human carbonic anhydrase VII protects cells from oxidative damage. Biol Chem. 2013;394(10):1343–8.PubMed
44.
go back to reference Kirshner JR, He S, Balasubramanyam V, Kepros J, Yang CY, Zhang M, Du Z, Barsoum J, Bertin J. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol Cancer Ther. 2008;7(8):2319–27.CrossRefPubMed Kirshner JR, He S, Balasubramanyam V, Kepros J, Yang CY, Zhang M, Du Z, Barsoum J, Bertin J. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol Cancer Ther. 2008;7(8):2319–27.CrossRefPubMed
46.
go back to reference Burz C, Berindan-Neagoe I, Balacescu O, Irimie A. Apoptosis in cancer:key molecular signaling pathways and therapy targets. Acta Oncol. 2009;48:811–21.CrossRefPubMed Burz C, Berindan-Neagoe I, Balacescu O, Irimie A. Apoptosis in cancer:key molecular signaling pathways and therapy targets. Acta Oncol. 2009;48:811–21.CrossRefPubMed
47.
go back to reference Cherbonnel-Lasserre C, Dosanjh MK. Suppression of apoptosis by overexpression of Bcl2 or BclxL promotes survival and mutagenesis after oxidative damage. Biochimie. 1997;79:613–7.CrossRefPubMed Cherbonnel-Lasserre C, Dosanjh MK. Suppression of apoptosis by overexpression of Bcl2 or BclxL promotes survival and mutagenesis after oxidative damage. Biochimie. 1997;79:613–7.CrossRefPubMed
48.
go back to reference Zhu S, Li T, Tan J, et al. Bax is essential for death receptor-mediated apoptosis in human colon cancer cells. Cancer Biother Radiopharm. 2012;27:577–81.CrossRefPubMed Zhu S, Li T, Tan J, et al. Bax is essential for death receptor-mediated apoptosis in human colon cancer cells. Cancer Biother Radiopharm. 2012;27:577–81.CrossRefPubMed
49.
go back to reference Valassiadou KE, Stefanaki K, Tzardi M, et al. Immunohistochemical expression of p53, bcl2, mdm2 and waf1/p21 proteins in colorectal adenocarcinomas. Anticancer Res. 1997;17:2571–6.PubMed Valassiadou KE, Stefanaki K, Tzardi M, et al. Immunohistochemical expression of p53, bcl2, mdm2 and waf1/p21 proteins in colorectal adenocarcinomas. Anticancer Res. 1997;17:2571–6.PubMed
50.
go back to reference Bonnotte B, Favre N, Moutet M, et al. Bcl2 mediated inhibition of apoptosis prevents immunogenicity and restores tumorigenicity of spontaneously regressive tumors. J Immunology. 1998;161:1433–8. Bonnotte B, Favre N, Moutet M, et al. Bcl2 mediated inhibition of apoptosis prevents immunogenicity and restores tumorigenicity of spontaneously regressive tumors. J Immunology. 1998;161:1433–8.
Metadata
Title
Novel derivative of aminobenzenesulfonamide (3c) induces apoptosis in colorectal cancer cells through ROS generation and inhibits cell migration
Authors
Khayal Al-Khayal
Ahmed Alafeefy
Mansoor-Ali Vaali-Mohammed
Amer Mahmood
Ahmed Zubaidi
Omar Al-Obeed
Zahid Khan
Maha Abdulla
Rehan Ahmad
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-3005-7

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine