Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

Establishing a xenograft mouse model of peritoneal dissemination of gastric cancer with organ invasion and fibrosis

Authors: Mitsuyoshi Okazaki, Sachio Fushida, Shinichi Harada, Tomoya Tsukada, Jun Kinoshita, Katsunobu Oyama, Tomoharu Miyashita, Itasu Ninomiya, Tetsuo Ohta

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

The clinical prognosis of gastric cancer with peritoneal dissemination is poor because of its chemoresistance and rich fibrosis. While several gastric cancer cell lines have been used to establish models of peritoneal dissemination by intraperitoneal injection, most peritoneal tumors that form adopt a medullary pattern in microscopic appearance. This histological finding for the model differs from that in the clinical situation. This study was performed to demonstrate the contribution of human peritoneal mesothelial cells (HPMCs) to fibrotic tumor formation and to establish a new xenograft model with high potential for peritoneal dissemination with organ invasion and extensive fibrosis.

Methods

We established four types of xenograft model: i) intraperitoneal injection of MKN45-P cells alone (control group), ii) injection of MKN45-P cells co-cultured with HPMCs (co-cultured group), iii) scratching the parietal peritoneum (parietal group), and iv) scratching the visceral peritoneum (visceral group) with a cotton swab before injection of co-cultured cells. Fibrosis, α-smooth muscle actin expression, and organ invasion by tumor cells were all assessed by immunohistochemical examination.

Results

All mice developed abdominal swelling with peritoneal tumors and bloody ascites. Tumors of the control and co-cultured groups were not invasive or fibrotic. Contrastingly, tumors of the scratch groups exhibited rich stromal fibrosis and possessed increased α-smooth muscle actin (α-SMA) expression. In particular, the visceral group showed edematous and spreading tumors invading the intestinal wall.

Conclusion

We established a model of peritoneal dissemination with organ invasion and stromal fibrosis. Formation of peritoneal dissemination required a favorable environment for cell adhesion, invasion, and growth. This model may be useful for analyzing the pathogenesis and treatment of peritoneal dissemination of gastric cancer.
Appendix
Available only for authorised users
Literature
2.
go back to reference Yamazaki H, Oshima A, Murakami R, et al. A long-term follow-up study of patients with gastric cancer detected by mass screening. Cancer. 1989;63:613–7.CrossRefPubMed Yamazaki H, Oshima A, Murakami R, et al. A long-term follow-up study of patients with gastric cancer detected by mass screening. Cancer. 1989;63:613–7.CrossRefPubMed
3.
go back to reference Chen CY, Wu CW, Lo SS, et al. Peritoneal carcinomatosis and lymph node metastasis are prognostic indicators in patients with borrmann type IV gastric carcinoma. Hepatogastroenterology. 2002;49:874–7.PubMed Chen CY, Wu CW, Lo SS, et al. Peritoneal carcinomatosis and lymph node metastasis are prognostic indicators in patients with borrmann type IV gastric carcinoma. Hepatogastroenterology. 2002;49:874–7.PubMed
4.
go back to reference Maruyama K, Kaminishi M, Hayashi K, et al. Gastric cancer treated in 1991 in Japan: data analysis of nationwide registry. Gastric cancer. 2006;9:51–66.CrossRefPubMed Maruyama K, Kaminishi M, Hayashi K, et al. Gastric cancer treated in 1991 in Japan: data analysis of nationwide registry. Gastric cancer. 2006;9:51–66.CrossRefPubMed
5.
go back to reference Sadeghi B, Arvieux C, Glehen O, et al. Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer. 2000;88:358–63.CrossRefPubMed Sadeghi B, Arvieux C, Glehen O, et al. Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer. 2000;88:358–63.CrossRefPubMed
6.
go back to reference Koizumi W, Narahara H, Hara T, et al. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet oncol. 2008;9:215–21.CrossRefPubMed Koizumi W, Narahara H, Hara T, et al. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet oncol. 2008;9:215–21.CrossRefPubMed
7.
go back to reference Fushida S, Kinoshita J, Yagi Y, et al. Dual anti-cancer effects of weekly intraperitoneal docetaxel in treatment of advanced gastric cancer patients with peritoneal carcinomatosis: a feasibility and pharmacokinetic study. Oncol rep. 2008;19:1305–10.PubMed Fushida S, Kinoshita J, Yagi Y, et al. Dual anti-cancer effects of weekly intraperitoneal docetaxel in treatment of advanced gastric cancer patients with peritoneal carcinomatosis: a feasibility and pharmacokinetic study. Oncol rep. 2008;19:1305–10.PubMed
8.
go back to reference Shirao K, Boku N, Yamada Y, et al. Randomized phase III study of 5-fluorouracil continuous infusion vs. Sequential methotrexate and 5-fluorouracil therapy in far advanced gastric cancer with peritoneal metastasis (JCOG0106). Jpn j clin oncol. 2013;43:972–80.CrossRefPubMed Shirao K, Boku N, Yamada Y, et al. Randomized phase III study of 5-fluorouracil continuous infusion vs. Sequential methotrexate and 5-fluorouracil therapy in far advanced gastric cancer with peritoneal metastasis (JCOG0106). Jpn j clin oncol. 2013;43:972–80.CrossRefPubMed
9.
go back to reference Fushida S, Kinoshita J, Kaji M, et al. Phase I/II study of intraperitoneal docetaxel plus S-1 for the gastric cancer patients with peritoneal carcinomatosis. Cancer chemother pharmacol. 2013;71:1265–72.CrossRefPubMedPubMedCentral Fushida S, Kinoshita J, Kaji M, et al. Phase I/II study of intraperitoneal docetaxel plus S-1 for the gastric cancer patients with peritoneal carcinomatosis. Cancer chemother pharmacol. 2013;71:1265–72.CrossRefPubMedPubMedCentral
10.
go back to reference Fushida S, Oyama K, Kinoshita J, et al. Intraperitoneal chemotherapy as a multimodal treatment for gastric cancer patients with peritoneal metastasis. J cancer ther. 2013;4:6–15.CrossRef Fushida S, Oyama K, Kinoshita J, et al. Intraperitoneal chemotherapy as a multimodal treatment for gastric cancer patients with peritoneal metastasis. J cancer ther. 2013;4:6–15.CrossRef
11.
go back to reference Otsuji E, Kuriu Y, Okamoto K, et al. Outcome of surgical treatment for patients with scirrhous carcinoma of the stomach. Am j surg. 2004;188:327–32.CrossRefPubMed Otsuji E, Kuriu Y, Okamoto K, et al. Outcome of surgical treatment for patients with scirrhous carcinoma of the stomach. Am j surg. 2004;188:327–32.CrossRefPubMed
12.
go back to reference Yashiro M, Chung YS, Nishimura S, et al. Fibrosis in the peritoneum induced by scirrhous gastric cancer cells may act as “soil” for peritoneal dissemination. Cancer. 1996;77:1668–75.CrossRefPubMed Yashiro M, Chung YS, Nishimura S, et al. Fibrosis in the peritoneum induced by scirrhous gastric cancer cells may act as “soil” for peritoneal dissemination. Cancer. 1996;77:1668–75.CrossRefPubMed
13.
go back to reference Zhang C, Awasthi N, Schwarz MA, et al. Establishing a peritoneal dissemination xenograft mouse model for survival outcome assessment of experimental gastric cancer. J surg res. 2013;182:227–34.CrossRefPubMed Zhang C, Awasthi N, Schwarz MA, et al. Establishing a peritoneal dissemination xenograft mouse model for survival outcome assessment of experimental gastric cancer. J surg res. 2013;182:227–34.CrossRefPubMed
14.
go back to reference Yashiro M, Chung YS, Nishimur S, et al. Peritoneal metastatic model for human scirrhous gastric carcinoma in nude mice. Clin exp metastasis. 1996;14:43–54.CrossRefPubMed Yashiro M, Chung YS, Nishimur S, et al. Peritoneal metastatic model for human scirrhous gastric carcinoma in nude mice. Clin exp metastasis. 1996;14:43–54.CrossRefPubMed
15.
go back to reference Kotanagi H, Saito Y, Shiozawa N, et al. Establishment of a human cancer cell line with high potential for peritoneal dissemination. J gastroenterol. 1995;30:437–8.CrossRefPubMed Kotanagi H, Saito Y, Shiozawa N, et al. Establishment of a human cancer cell line with high potential for peritoneal dissemination. J gastroenterol. 1995;30:437–8.CrossRefPubMed
16.
go back to reference Tsukada T, Fushida S, Harada S, et al. The role of human peritoneal mesothelial cells in the fibrosis and progression of gastric cancer. Int j oncol. 2012;41:476–82.PubMedPubMedCentral Tsukada T, Fushida S, Harada S, et al. The role of human peritoneal mesothelial cells in the fibrosis and progression of gastric cancer. Int j oncol. 2012;41:476–82.PubMedPubMedCentral
17.
go back to reference Sugarbaker PH, Stuart OA, Vidal-Jove J, et al. Pharmacokinetics of the peritonealplasma barrier after systemic mitomycin C administration. Cancer treat res. 1996;82:41–52.CrossRefPubMed Sugarbaker PH, Stuart OA, Vidal-Jove J, et al. Pharmacokinetics of the peritonealplasma barrier after systemic mitomycin C administration. Cancer treat res. 1996;82:41–52.CrossRefPubMed
18.
go back to reference Yung S, Li FK, Chan TM. Peritoneal mesothelial cell culture and biology. Perit dial int. 2006;26:162–73.PubMed Yung S, Li FK, Chan TM. Peritoneal mesothelial cell culture and biology. Perit dial int. 2006;26:162–73.PubMed
19.
go back to reference Yonemura Y, Endo Y, Yamaguchi T, et al. Mechanisms of the formation of the peritoneal dissemination in gastric cancer. Int j oncol. 1996;8:795–02.PubMed Yonemura Y, Endo Y, Yamaguchi T, et al. Mechanisms of the formation of the peritoneal dissemination in gastric cancer. Int j oncol. 1996;8:795–02.PubMed
20.
go back to reference Buckley ST, Medina C, Ehrhardt C. Differential susceptibility to epithelialmesenchymal transition (EMT) of alveolar, bronchial and intestinal epithelial cells in vitro and the effect of angiotensin II receptor inhibition. Cell tissue res. 2010;342:39–51.CrossRefPubMed Buckley ST, Medina C, Ehrhardt C. Differential susceptibility to epithelialmesenchymal transition (EMT) of alveolar, bronchial and intestinal epithelial cells in vitro and the effect of angiotensin II receptor inhibition. Cell tissue res. 2010;342:39–51.CrossRefPubMed
23.
go back to reference Shinbo T, Fushida S, Tsukada T, et al. Protein-bound polysaccharide K suppresses tumor fibrosis in gastric cancer by inhibiting the TGF-β signaling pathway. Oncol rep. 2015;33:553–8.PubMed Shinbo T, Fushida S, Tsukada T, et al. Protein-bound polysaccharide K suppresses tumor fibrosis in gastric cancer by inhibiting the TGF-β signaling pathway. Oncol rep. 2015;33:553–8.PubMed
24.
go back to reference Okazaki M, Fushida S, Harada S, et al. The angiotensin II type 1 receptor blocker candesartan suppresses proliferation and fibrosis in gastric cancer. Cancer lett. 2014;355:46–53.CrossRefPubMed Okazaki M, Fushida S, Harada S, et al. The angiotensin II type 1 receptor blocker candesartan suppresses proliferation and fibrosis in gastric cancer. Cancer lett. 2014;355:46–53.CrossRefPubMed
25.
go back to reference Lv ZD, Na D, Ma XY, et al. Human peritoneal mesothelial cell transformation into myofibroblasts in response to TGF-ß1 in vitro. Int j mol med. 2011;27:187–93.PubMed Lv ZD, Na D, Ma XY, et al. Human peritoneal mesothelial cell transformation into myofibroblasts in response to TGF-ß1 in vitro. Int j mol med. 2011;27:187–93.PubMed
26.
go back to reference Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1989;1:571–3. Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1989;1:571–3.
27.
go back to reference Lv ZD, Wang HB, Dong Q, et al. Mesothelial cells differentiate into fibroblast-like cells under the scirrhous gastric cancer microenvironment and promote peritoneal carcinomatosis in vitro and in vivo. Mol cell biochem. 2013;377:177–85.CrossRefPubMed Lv ZD, Wang HB, Dong Q, et al. Mesothelial cells differentiate into fibroblast-like cells under the scirrhous gastric cancer microenvironment and promote peritoneal carcinomatosis in vitro and in vivo. Mol cell biochem. 2013;377:177–85.CrossRefPubMed
28.
go back to reference Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N engl j med. 2000;342:1350–8.CrossRefPubMed Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N engl j med. 2000;342:1350–8.CrossRefPubMed
29.
30.
go back to reference Saito Y, Sekine W, Sano R, et al. Potentiation of cell invasion and matrix metalloproteinase production by alpha3beta1 integrin-mediated adhesion of gastric carcinoma cells to laminin-5. Clin exp metastasis. 2010;27:197–205.CrossRefPubMed Saito Y, Sekine W, Sano R, et al. Potentiation of cell invasion and matrix metalloproteinase production by alpha3beta1 integrin-mediated adhesion of gastric carcinoma cells to laminin-5. Clin exp metastasis. 2010;27:197–205.CrossRefPubMed
31.
go back to reference Takatsuki H, Komatsu S, Sano R, et al. Adhesion of gastric carcinoma cells to peritoneum mediated by alpha3beta1 integrin (VLA-3). Cancer res. 2004;64:6065–70.CrossRefPubMed Takatsuki H, Komatsu S, Sano R, et al. Adhesion of gastric carcinoma cells to peritoneum mediated by alpha3beta1 integrin (VLA-3). Cancer res. 2004;64:6065–70.CrossRefPubMed
32.
go back to reference Yonemura Y, Endou Y, Fujita H, et al. Role of MMP-7 in the formation of peritoneal dissemination in gastric cancer. Gastric cancer. 2000;3:63–70.CrossRefPubMed Yonemura Y, Endou Y, Fujita H, et al. Role of MMP-7 in the formation of peritoneal dissemination in gastric cancer. Gastric cancer. 2000;3:63–70.CrossRefPubMed
33.
go back to reference Maehara Y, Hasuda S, Koga T, et al. Postoperative outcome and sites of recurrence in patients following curative resection of gastric cancer. Br j surg. 2000;87:353–7.CrossRefPubMed Maehara Y, Hasuda S, Koga T, et al. Postoperative outcome and sites of recurrence in patients following curative resection of gastric cancer. Br j surg. 2000;87:353–7.CrossRefPubMed
34.
go back to reference Otsuji E, Kobayashi S, Okamoto K, et al. Is timing of death from tumor recurrence predictable after curative resection for gastric cancer? World j surg. 2001;25:1373–6.PubMed Otsuji E, Kobayashi S, Okamoto K, et al. Is timing of death from tumor recurrence predictable after curative resection for gastric cancer? World j surg. 2001;25:1373–6.PubMed
35.
go back to reference Otsuji E, Kuriu Y, Ichikawa D, et al. Time to death and pattern of death in recurrence following curative resection of gastric carcinoma: analysis based on depth of invasion. World j surg. 2004;28:866–9.CrossRefPubMed Otsuji E, Kuriu Y, Ichikawa D, et al. Time to death and pattern of death in recurrence following curative resection of gastric carcinoma: analysis based on depth of invasion. World j surg. 2004;28:866–9.CrossRefPubMed
36.
go back to reference Ohno S, Fujii T, Ueda S, et al. Predictive factors and timing for liver recurrence after curative resection of gastric carcinoma. Am j surg. 2003;185:258–63.CrossRefPubMed Ohno S, Fujii T, Ueda S, et al. Predictive factors and timing for liver recurrence after curative resection of gastric carcinoma. Am j surg. 2003;185:258–63.CrossRefPubMed
Metadata
Title
Establishing a xenograft mouse model of peritoneal dissemination of gastric cancer with organ invasion and fibrosis
Authors
Mitsuyoshi Okazaki
Sachio Fushida
Shinichi Harada
Tomoya Tsukada
Jun Kinoshita
Katsunobu Oyama
Tomoharu Miyashita
Itasu Ninomiya
Tetsuo Ohta
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2991-9

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine