Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

MK-2206 sensitizes BRCA-deficient epithelial ovarian adenocarcinoma to cisplatin and olaparib

Authors: Margaret E. Whicker, Z. Ping Lin, Ruth Hanna, Alan C. Sartorelli, Elena S. Ratner

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Platinum resistance is a major obstacle in the treatment of epithelial ovarian cancer (EOC). Activation of the AKT pathway promotes platinum resistance while inhibition of AKT sensitizes chemoresistant cells. Patients with BRCA mutant EOC, and thus a defect in the homologous recombination (HR) repair pathway, demonstrate greater clinical response to platinum and olaparib therapy than patients with BRCA wild-type EOC. MK-2206, an allosteric inhibitor of AKT phosphorylation, sensitizes a variety of cell types to various anticancer agents and is currently undergoing phase II trials as monotherapy for platinum-resistant ovarian, fallopian tube, and peritoneal cancer. This study examines the differential effects of AKT inhibition with cisplatin and olaparib therapy in BRCA1/2-deficient versus wild-type EOC.

Methods

PEO1, a chemosensitive BRCA2-mutant serous ovarian adenocarcinoma, and PEO4, a reverted BRCA2-proficient line from the same patient after the development of chemotherapeutic resistance, were primarily used for the study. In PEO1, MK-2206 demonstrated moderate to strong synergism with cisplatin and olaparib at all doses, while demonstrating antagonism at all doses in PEO4.

Results

Baseline phospho-AKT activity in untreated cells was upregulated in both BRCA1- and 2-deficient cell lines. MK-2206 prevented cisplatin- and olaparib-induced AKT activation in the BRCA2-deficient PEO1 cells. We propose that BRCA-deficient EOC cells upregulate baseline AKT activity to enhance survival in the absence of HR. Higher AKT activity is also required to withstand cytotoxic agent-induced DNA damage, leading to strong synergism between MK-2206 and cisplatin or olaparib therapy in BRCA-deficient cells.

Conclusions

MK-2206 shows promise as a chemosensitization agent in BRCA-deficient EOC and merits clinical investigation in this patient population.
Literature
1.
go back to reference Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA: Cancer J Clin. 2012;62(1):10–29. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA: Cancer J Clin. 2012;62(1):10–29.
2.
3.
go back to reference du Bois A, Lück H, Meier W, Adams H, Möbus V, Costa S, et al. A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst. 2003;95(17):1320–9.CrossRefPubMed du Bois A, Lück H, Meier W, Adams H, Möbus V, Costa S, et al. A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst. 2003;95(17):1320–9.CrossRefPubMed
4.
go back to reference Piccart MJ, Bertelsen K, James K, Cassidy J, Mangioni C, Simonsen E, et al. Randomized intergroup trial of cisplatin–paclitaxel versus cisplatin–cyclophosphamide in women with advanced epithelial ovarian cancer: three-year results. J Natl Cancer Inst. 2000;92(9):699–708.CrossRefPubMed Piccart MJ, Bertelsen K, James K, Cassidy J, Mangioni C, Simonsen E, et al. Randomized intergroup trial of cisplatin–paclitaxel versus cisplatin–cyclophosphamide in women with advanced epithelial ovarian cancer: three-year results. J Natl Cancer Inst. 2000;92(9):699–708.CrossRefPubMed
5.
go back to reference McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med. 1996;34(1):1–6.CrossRef McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med. 1996;34(1):1–6.CrossRef
7.
go back to reference Lister-Sharp D, McDonagh M, Khan K, Kleijnen J. A rapid and systematic review of the effectiveness and cost-effectiveness of the taxanes used in the treatment of advanced breast and ovarian cancer. Health Technol Assess. 2000;4(17):110. Lister-Sharp D, McDonagh M, Khan K, Kleijnen J. A rapid and systematic review of the effectiveness and cost-effectiveness of the taxanes used in the treatment of advanced breast and ovarian cancer. Health Technol Assess. 2000;4(17):110.
8.
go back to reference Cannistra SA. Is there a “best” choice of second-line agent in the treatment of recurrent, potentially platinum-sensitive ovarian cancer? J Clin Oncol. 2002;20(5):1158–60.PubMed Cannistra SA. Is there a “best” choice of second-line agent in the treatment of recurrent, potentially platinum-sensitive ovarian cancer? J Clin Oncol. 2002;20(5):1158–60.PubMed
9.
go back to reference Altomare DA, Wang HQ, Skele KL, De Rienzo A, Klein-Szanto AJ, Godwin AK, et al. AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene. 2004;23(34):5853–7.CrossRefPubMed Altomare DA, Wang HQ, Skele KL, De Rienzo A, Klein-Szanto AJ, Godwin AK, et al. AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene. 2004;23(34):5853–7.CrossRefPubMed
10.
go back to reference Benedetti V, Perego P, Luca Beretta G, Corna E, Tinelli S, Righetti SC, et al. Modulation of survival pathways in ovarian carcinoma cell lines resistant to platinum compounds. Mol Cancer Ther. 2008;7(3):679–87.CrossRefPubMed Benedetti V, Perego P, Luca Beretta G, Corna E, Tinelli S, Righetti SC, et al. Modulation of survival pathways in ovarian carcinoma cell lines resistant to platinum compounds. Mol Cancer Ther. 2008;7(3):679–87.CrossRefPubMed
11.
go back to reference Reles A, Wen WH, Schmider A, Gee C, Runnebaum IB, Kilian U, et al. Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer. Clin Cancer Res. 2001;7(10):2984–97.PubMed Reles A, Wen WH, Schmider A, Gee C, Runnebaum IB, Kilian U, et al. Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer. Clin Cancer Res. 2001;7(10):2984–97.PubMed
12.
go back to reference Lawlor MA, Alessi DR. PKB/AKT: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci. 2001;114(16):2903–10.PubMed Lawlor MA, Alessi DR. PKB/AKT: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci. 2001;114(16):2903–10.PubMed
13.
go back to reference LoPiccolo J. Targeting AKT in cancer therapy. Anticancer Drugs. 2007;18(8):861–74.PubMed LoPiccolo J. Targeting AKT in cancer therapy. Anticancer Drugs. 2007;18(8):861–74.PubMed
14.
go back to reference Fraser M, Bai T, Tsang BK. AKT promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int J Cancer. 2008;122(3):534–46.CrossRefPubMed Fraser M, Bai T, Tsang BK. AKT promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int J Cancer. 2008;122(3):534–46.CrossRefPubMed
15.
go back to reference Bellacosa A, De Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer. 1995;64(4):280–5.CrossRefPubMed Bellacosa A, De Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer. 1995;64(4):280–5.CrossRefPubMed
16.
go back to reference Yuan ZQ, Sun M, Feldman R, Wang G, Ma X, Jiang C, et al. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/AKT pathway in human ovarian cancer. Oncogene. 2000;19(19):2324–30.CrossRefPubMed Yuan ZQ, Sun M, Feldman R, Wang G, Ma X, Jiang C, et al. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/AKT pathway in human ovarian cancer. Oncogene. 2000;19(19):2324–30.CrossRefPubMed
17.
go back to reference DeFeo-Jones D, Barnett SF, Fu S, Hancock PJ, Haskell KM, Leander KR, et al. Tumor cell sensitization to apoptotic stimuli by selective inhibition of specific AKT/PKB family members. Mol Cancer Ther. 2005;4(2):271–9.PubMed DeFeo-Jones D, Barnett SF, Fu S, Hancock PJ, Haskell KM, Leander KR, et al. Tumor cell sensitization to apoptotic stimuli by selective inhibition of specific AKT/PKB family members. Mol Cancer Ther. 2005;4(2):271–9.PubMed
18.
go back to reference Yan L. Abstract #DDT01-1: MK-2206: A potent oral allosteric AKT inhibitor. 2009 American Association for Cancer Research; Cancer Res. 2014;69(9 Supplement). Yan L. Abstract #DDT01-1: MK-2206: A potent oral allosteric AKT inhibitor. 2009 American Association for Cancer Research; Cancer Res. 2014;69(9 Supplement).
19.
go back to reference Cherrin C, Haskell K, Howell B, Jones R, Leander K, Robinson R, et al. An allosteric AKT inhibitor effectively blocks AKT signaling and tumor growth with only transient effects on glucose and insulin levels in vivo. Cancer Biol Ther. 2010;9(7):493–503.CrossRefPubMedPubMedCentral Cherrin C, Haskell K, Howell B, Jones R, Leander K, Robinson R, et al. An allosteric AKT inhibitor effectively blocks AKT signaling and tumor growth with only transient effects on glucose and insulin levels in vivo. Cancer Biol Ther. 2010;9(7):493–503.CrossRefPubMedPubMedCentral
20.
go back to reference Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, et al. MK-2206, an allosteric AKT inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010;9(7):1956–67.CrossRefPubMed Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, et al. MK-2206, an allosteric AKT inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 2010;9(7):1956–67.CrossRefPubMed
21.
go back to reference Khanna KK, Jackson S. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27(3):247–54.CrossRefPubMed Khanna KK, Jackson S. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27(3):247–54.CrossRefPubMed
22.
go back to reference Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP. The Role of BRCA1 in the Cellular Response to Chemotherapy. J Natl Cancer Inst. 2004;96(22):1659–68.CrossRefPubMed Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP. The Role of BRCA1 in the Cellular Response to Chemotherapy. J Natl Cancer Inst. 2004;96(22):1659–68.CrossRefPubMed
23.
go back to reference Horiuchi A. BRCA1 expression is an important biomarker for chemosensitivity: suppression of BRCA1 increases the apoptosis via up-regulation of p53 and p21 during cisplatin treatment in ovarian cancer cells. Biomark Insights. 2006;1:49. Horiuchi A. BRCA1 expression is an important biomarker for chemosensitivity: suppression of BRCA1 increases the apoptosis via up-regulation of p53 and p21 during cisplatin treatment in ovarian cancer cells. Biomark Insights. 2006;1:49.
24.
go back to reference Nojima K, Hochegger H, Saberi A, Fukushima T, Kikuchi K, Yoshimura M, et al. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells. Cancer Res. 2005;65(24):11704–11.CrossRefPubMed Nojima K, Hochegger H, Saberi A, Fukushima T, Kikuchi K, Yoshimura M, et al. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells. Cancer Res. 2005;65(24):11704–11.CrossRefPubMed
25.
go back to reference Tutt ANJ, Lord CJ, McCabe N, Farmer H, Turner N, Martin NM, et al. Exploiting the DNA repair defect in BRCA mutant cells in the design of new therapeutic strategies for cancer. Cold Spring Harbor Symp Quant Biol. 2005;70:139–48.CrossRefPubMed Tutt ANJ, Lord CJ, McCabe N, Farmer H, Turner N, Martin NM, et al. Exploiting the DNA repair defect in BRCA mutant cells in the design of new therapeutic strategies for cancer. Cold Spring Harbor Symp Quant Biol. 2005;70:139–48.CrossRefPubMed
26.
go back to reference Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 2008;68(8):2581–6.CrossRefPubMedPubMedCentral Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 2008;68(8):2581–6.CrossRefPubMedPubMedCentral
27.
go back to reference Ashworth A. A synthetic lethal therapeutic approach: poly (ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26(22):3785–90.CrossRefPubMed Ashworth A. A synthetic lethal therapeutic approach: poly (ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26(22):3785–90.CrossRefPubMed
28.
go back to reference Szanto A, Hellebrand EE, Bognar Z, Tucsek Z, Szabo A, Gallyas Jr F, et al. PARP-1 inhibition-induced activation of PI-3-kinase-AKT pathway promotes resistance to taxol. Biochem Pharmacol. 2009;77(8):1348–57.CrossRefPubMed Szanto A, Hellebrand EE, Bognar Z, Tucsek Z, Szabo A, Gallyas Jr F, et al. PARP-1 inhibition-induced activation of PI-3-kinase-AKT pathway promotes resistance to taxol. Biochem Pharmacol. 2009;77(8):1348–57.CrossRefPubMed
29.
30.
go back to reference Moro L, Arbini AA, Marra E, Greco M. Constitutive activation of MAPK/ERK inhibits prostate cancer cell proliferation through upregulation of BRCA2. Int J Oncol. 2007;30(1):217–24.PubMed Moro L, Arbini AA, Marra E, Greco M. Constitutive activation of MAPK/ERK inhibits prostate cancer cell proliferation through upregulation of BRCA2. Int J Oncol. 2007;30(1):217–24.PubMed
31.
go back to reference Plo I, Laulier C, Gauthier L, Lebrun F, Calvo F, Lopez BS. AKT1 inhibits homologous recombination by inducing cytoplasmic retention of BRCA1 and RAD51. Cancer Res. 2008;68(22):9404–12.CrossRefPubMed Plo I, Laulier C, Gauthier L, Lebrun F, Calvo F, Lopez BS. AKT1 inhibits homologous recombination by inducing cytoplasmic retention of BRCA1 and RAD51. Cancer Res. 2008;68(22):9404–12.CrossRefPubMed
32.
go back to reference Ratner E, Sartorelli A, Lin Z. Poly (ADP-ribose) polymerase inhibitors: on the horizon of tailored and personalized therapies for epithelial ovarian cancer. Curr Opin Oncol. 2012;(Epub ahead of print) Ratner E, Sartorelli A, Lin Z. Poly (ADP-ribose) polymerase inhibitors: on the horizon of tailored and personalized therapies for epithelial ovarian cancer. Curr Opin Oncol. 2012;(Epub ahead of print)
33.
go back to reference Lin ZP, Belcourt MF, Cory JG, Sartorelli AC. Stable suppression of the R2 subunit of ribonucleotide reductase by R2-targeted short interference RNA sensitizes p53(−/−) HCT-116 colon cancer cells to DNA-damaging agents and ribonucleotide reductase inhibitors. J Biol Chem. 2004;279(26):27030–8.CrossRefPubMed Lin ZP, Belcourt MF, Cory JG, Sartorelli AC. Stable suppression of the R2 subunit of ribonucleotide reductase by R2-targeted short interference RNA sensitizes p53(−/−) HCT-116 colon cancer cells to DNA-damaging agents and ribonucleotide reductase inhibitors. J Biol Chem. 2004;279(26):27030–8.CrossRefPubMed
34.
go back to reference Lin ZP, Ratner ES, Whicker ME, Lee Y, Sartorelli AC. Triapine disrupts CtIP-mediated homologous recombination repair and sensitizes ovarian cancer cells to PARP and topoisomerase inhibitors. Mol Cancer Res. 2014;12(3):381–93.CrossRefPubMedPubMedCentral Lin ZP, Ratner ES, Whicker ME, Lee Y, Sartorelli AC. Triapine disrupts CtIP-mediated homologous recombination repair and sensitizes ovarian cancer cells to PARP and topoisomerase inhibitors. Mol Cancer Res. 2014;12(3):381–93.CrossRefPubMedPubMedCentral
35.
go back to reference Langdon SP, Lawrie SS, Hay FG, Hawkes MM, McDonald A, Hayward IP, et al. Characterization and properties of nine human ovarian adenocarcinoma cell lines. Cancer Res. 1988;48(21):6166–72.PubMed Langdon SP, Lawrie SS, Hay FG, Hawkes MM, McDonald A, Hayward IP, et al. Characterization and properties of nine human ovarian adenocarcinoma cell lines. Cancer Res. 1988;48(21):6166–72.PubMed
36.
go back to reference Cooke SL, Ng CKY, Melnyk N, Garcia MJ, Hardcastle T, Temple J, et al. Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma. Oncogene. 2010;29(35):4905–13.CrossRefPubMedPubMedCentral Cooke SL, Ng CKY, Melnyk N, Garcia MJ, Hardcastle T, Temple J, et al. Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma. Oncogene. 2010;29(35):4905–13.CrossRefPubMedPubMedCentral
37.
go back to reference Chou TC. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27.CrossRefPubMed Chou TC. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27.CrossRefPubMed
38.
go back to reference Goldfarb SB, Kashlan OB, Watkins JN, Suaud L, Yan W, Kleyman TR, et al. Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels. Proc Natl Acad Sci USA. 2006;103(15):5817–22.CrossRefPubMedPubMedCentral Goldfarb SB, Kashlan OB, Watkins JN, Suaud L, Yan W, Kleyman TR, et al. Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels. Proc Natl Acad Sci USA. 2006;103(15):5817–22.CrossRefPubMedPubMedCentral
39.
go back to reference Zhu Z, Ramos J, Kampa K, Adimoolam S, Sirisawad M, Yu Z, et al. Control of ASPP2/53BP2L protein levels by proteasomal degradation modulates p53 apoptotic function. J Biol Chem. 2005;280(41):34473–80.CrossRefPubMed Zhu Z, Ramos J, Kampa K, Adimoolam S, Sirisawad M, Yu Z, et al. Control of ASPP2/53BP2L protein levels by proteasomal degradation modulates p53 apoptotic function. J Biol Chem. 2005;280(41):34473–80.CrossRefPubMed
40.
go back to reference Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84.CrossRefPubMed Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84.CrossRefPubMed
41.
42.
go back to reference Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates AKT phosphorylation and substrate specificity. Cell. 2006;127(1):125–37.CrossRefPubMed Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates AKT phosphorylation and substrate specificity. Cell. 2006;127(1):125–37.CrossRefPubMed
44.
go back to reference Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med. 2012;366(15):1382–92.CrossRefPubMed Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med. 2012;366(15):1382–92.CrossRefPubMed
45.
46.
go back to reference Siddik ZS. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22(47):7265–79.CrossRefPubMed Siddik ZS. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22(47):7265–79.CrossRefPubMed
47.
go back to reference Chou T. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440–6.CrossRefPubMed Chou T. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440–6.CrossRefPubMed
Metadata
Title
MK-2206 sensitizes BRCA-deficient epithelial ovarian adenocarcinoma to cisplatin and olaparib
Authors
Margaret E. Whicker
Z. Ping Lin
Ruth Hanna
Alan C. Sartorelli
Elena S. Ratner
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2598-1

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine