Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

Osteopontin and thrombospondin-1 play opposite roles in promoting tumor aggressiveness of primary resected non-small cell lung cancer

Authors: Mathieu Rouanne, Julien Adam, Aïcha Goubar, Angélique Robin, Caroline Ohana, Emilie Louvet, Jiemin Cormier, Olaf Mercier, Peter Dorfmüller, Soly Fattal, Vincent Thomas de Montpreville, Thierry Lebret, Philippe Dartevelle, Elie Fadel, Benjamin Besse, Ken André Olaussen, Christian Auclair, Jean-Charles Soria

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Osteopontin (OPN) and thrombospondin-1 (TSP-1) are extracellular matrix proteins secreted by stromal and tumor cells. These proteins appear to have a key role in the tumor microenvironment for cancer development and metastasis. There is little information regarding the prognostic value of the combination of these two proteins in human cancers. Our aim was to clarify clinical significance and prognostic value of each circulating protein and their combination in primary resected non-small cell lung cancer (NSCLC) patients.

Methods

We retrospectively reviewed 171 patients with NSCLC following curative intent surgery from January to December of 2012. Preoperative serums, demographics, clinical and pathological data and molecular profiling were analyzed. Pre-treatment OPN and TSP-1 serum levels were measured by ELISA. Tissue protein expression in primary tumor samples was determined by immunohistochemical analysis.

Results

OPN and TSP-1 serum levels were inversely correlated with survival rates. For each 50 units increment of serum OPN, an increased risk of metastasis by 69 % (unadjusted HR 1.69, 95 % CI 1.12–2.56, p = 0.01) and an increased risk of death by 95 % (unadjusted HR 1.95, 95 % CI 1.15–3.32, p = 0.01) were observed. Conversely, for each 10 units increment in TSP-1, the risk of death was decreased by 85 % (unadjusted HR 0.15, 95 % CI 0.03–0.89; p = 0.04). No statistically significant correlation was found between TSP-1 serum level and distant metastasis-free survival (p = 0.2). On multivariate analysis, OPN and TSP-1 serum levels were independent prognostic factors of overall survival (HR 1.71, 95 % CI 1.04–2.82, p = 0.04 for an increase of 50 ng/mL in OPN; HR 0.18, 95 % CI 0.04–0.87, p = 0.03 for an increase of 10 ng/mL in TSP-1). In addition, the combination of OPN and TSP-1 serum levels remained an independent prognostic factor for overall survival (HR 1.31, 95 % CI 1.03–1.67, p = 0.03 for an increase of 6 ng/mL in OPN/TSP-1 ratio).

Conclusions

Our results show that pre-treatment OPN and TSP-1 serum levels may reflect the aggressiveness of the tumor and might serve as prognostic markers in patients with primary resected NSCLC.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Pignon JP, Tribodet H, Scagliotti GV, et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol. 2008;26:3552–9.CrossRefPubMed Pignon JP, Tribodet H, Scagliotti GV, et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J Clin Oncol. 2008;26:3552–9.CrossRefPubMed
3.
go back to reference Demicheli R, Fornili M, Ambrogi F, et al. Recurrence dynamics for non-small-cell lung cancer: effect of surgery on the development of metastases. J Thorac Oncol. 2012;7:723–30.CrossRefPubMed Demicheli R, Fornili M, Ambrogi F, et al. Recurrence dynamics for non-small-cell lung cancer: effect of surgery on the development of metastases. J Thorac Oncol. 2012;7:723–30.CrossRefPubMed
4.
go back to reference The NSCLC Meta-analyses Collaborative Group, Arriagada R, Auperin A, et al. Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: two meta-analyses of individual patient data. Lancet. 2010;375:1267–77.CrossRef The NSCLC Meta-analyses Collaborative Group, Arriagada R, Auperin A, et al. Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: two meta-analyses of individual patient data. Lancet. 2010;375:1267–77.CrossRef
5.
go back to reference Friboulet L, Olaussen KA, Pignon JP, et al. ERCC1 isoform expression and DNA repair in non-small-cell lung cancer. N Engl J Med. 2013;368(12):1101–10.CrossRefPubMedPubMedCentral Friboulet L, Olaussen KA, Pignon JP, et al. ERCC1 isoform expression and DNA repair in non-small-cell lung cancer. N Engl J Med. 2013;368(12):1101–10.CrossRefPubMedPubMedCentral
6.
go back to reference Wong GS, Rustgi K. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis. Br J Cancer. 2013;108(4):755–61.CrossRefPubMedPubMedCentral Wong GS, Rustgi K. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis. Br J Cancer. 2013;108(4):755–61.CrossRefPubMedPubMedCentral
8.
go back to reference Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.CrossRefPubMed Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.CrossRefPubMed
9.
go back to reference Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2(8):563–72.CrossRefPubMed Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2(8):563–72.CrossRefPubMed
10.
go back to reference Chiodoni C, Colombo MP, Sangaletti S. Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev. 2010;29:295–307.CrossRefPubMed Chiodoni C, Colombo MP, Sangaletti S. Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev. 2010;29:295–307.CrossRefPubMed
11.
go back to reference Bellahcène A, Castronovo V, Ogbureke KU, et al. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer. 2008;8(3):212–26.CrossRefPubMedPubMedCentral Bellahcène A, Castronovo V, Ogbureke KU, et al. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer. 2008;8(3):212–26.CrossRefPubMedPubMedCentral
12.
go back to reference Roberts DD. Thrombospondins: from structure to therapeutics. Cell Mol Life Sci. 2008;65(5):699–71.CrossRef Roberts DD. Thrombospondins: from structure to therapeutics. Cell Mol Life Sci. 2008;65(5):699–71.CrossRef
13.
go back to reference Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med. 2002;6:1–12.CrossRefPubMed Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med. 2002;6:1–12.CrossRefPubMed
14.
go back to reference Yee KO, Streit M, Hawighorst T, et al. Expression of the type-1 repeats of thrombospondin-1 inhibits tumor growth through activation of transforming growth factor-beta. Am J Pathol. 2004;165(2):541–52.CrossRefPubMedPubMedCentral Yee KO, Streit M, Hawighorst T, et al. Expression of the type-1 repeats of thrombospondin-1 inhibits tumor growth through activation of transforming growth factor-beta. Am J Pathol. 2004;165(2):541–52.CrossRefPubMedPubMedCentral
16.
go back to reference Martin-Manso G, Galli S, Ridnour LA, et al. Thrombospondin 1 promotes tumor macrophage recruitment and enhances tumor cell cytotoxicity of differentiated U937 cells. Cancer Res. 2008;68:7090–9.CrossRefPubMedPubMedCentral Martin-Manso G, Galli S, Ridnour LA, et al. Thrombospondin 1 promotes tumor macrophage recruitment and enhances tumor cell cytotoxicity of differentiated U937 cells. Cancer Res. 2008;68:7090–9.CrossRefPubMedPubMedCentral
17.
go back to reference Young MF, Kerr JM, Termine JD, et al. cDNA cloning, mRNA distribution and heterogeneity, chromosomal location, and RFLP analysis of human osteopontin (OPN). Genomics. 1990;7:491–502.CrossRefPubMed Young MF, Kerr JM, Termine JD, et al. cDNA cloning, mRNA distribution and heterogeneity, chromosomal location, and RFLP analysis of human osteopontin (OPN). Genomics. 1990;7:491–502.CrossRefPubMed
18.
19.
go back to reference Anborgh PH, Mutrie JC, Tuck AB. Role of the metastasis-promoting protein osteopontin in the tumour microenvironment. J Cell Mol Med. 2010;14:2037–44.CrossRefPubMedPubMedCentral Anborgh PH, Mutrie JC, Tuck AB. Role of the metastasis-promoting protein osteopontin in the tumour microenvironment. J Cell Mol Med. 2010;14:2037–44.CrossRefPubMedPubMedCentral
20.
go back to reference El-Tanani MK. Role of osteopontin in cellular signaling and metastatic phenotype. Front Biosc. 2008;13:4276–84.CrossRef El-Tanani MK. Role of osteopontin in cellular signaling and metastatic phenotype. Front Biosc. 2008;13:4276–84.CrossRef
21.
go back to reference Fedarko NS, Jain A, Karadag A, et al. Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res. 2001;7:4060–6.PubMed Fedarko NS, Jain A, Karadag A, et al. Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res. 2001;7:4060–6.PubMed
23.
go back to reference Ostheimer C, Bache M, Güttler A, et al. Prognostic information of serial plasma osteopontin measurement in radiotherapy of non-small-cell lung cancer. BMC Cancer. 2014;14:858.CrossRefPubMedPubMedCentral Ostheimer C, Bache M, Güttler A, et al. Prognostic information of serial plasma osteopontin measurement in radiotherapy of non-small-cell lung cancer. BMC Cancer. 2014;14:858.CrossRefPubMedPubMedCentral
24.
go back to reference Ahmed M, Behera R, Chakraborty G, et al. Osteopontin: a potentially important therapeutic target in cancer. Expert Opin Ther Targets. 2011;15(9):1113–26.CrossRefPubMed Ahmed M, Behera R, Chakraborty G, et al. Osteopontin: a potentially important therapeutic target in cancer. Expert Opin Ther Targets. 2011;15(9):1113–26.CrossRefPubMed
25.
go back to reference Isa S, Kawaguchi T, Teramukai S, et al. Serum osteopontin levels are highly prognostic for survival in advanced non–small-cell lung cancer: Results from JMTO LC 0004. J Thorac Oncol. 2009;4:1104–10.CrossRefPubMed Isa S, Kawaguchi T, Teramukai S, et al. Serum osteopontin levels are highly prognostic for survival in advanced non–small-cell lung cancer: Results from JMTO LC 0004. J Thorac Oncol. 2009;4:1104–10.CrossRefPubMed
26.
go back to reference Blasberg JD, Pass HI, Goparaju CM, et al. Reduction of elevated plasma osteopontin levels with resection of non-small-cell lung cancer. J Clin Oncol. 2010;28(6):936–41.CrossRefPubMedPubMedCentral Blasberg JD, Pass HI, Goparaju CM, et al. Reduction of elevated plasma osteopontin levels with resection of non-small-cell lung cancer. J Clin Oncol. 2010;28(6):936–41.CrossRefPubMedPubMedCentral
27.
go back to reference Travis WD, Brambilla E, Muller-Hermlink HK, et al. Pathology and genetics of tumours of the lung, pleura, thymus and heart. In: World Health Organization classification of tumours. Lyon: IARC Press; 2004. Travis WD, Brambilla E, Muller-Hermlink HK, et al. Pathology and genetics of tumours of the lung, pleura, thymus and heart. In: World Health Organization classification of tumours. Lyon: IARC Press; 2004.
28.
go back to reference Travis WD, Brambilla E, Noguchi M, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6(2):244–85.CrossRefPubMedPubMedCentral Travis WD, Brambilla E, Noguchi M, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6(2):244–85.CrossRefPubMedPubMedCentral
29.
go back to reference Goldstraw P, Crowley J, Chansky K. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol. 2007;2(8):706–14.CrossRefPubMed Goldstraw P, Crowley J, Chansky K. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol. 2007;2(8):706–14.CrossRefPubMed
30.
go back to reference Pailler E, Adam J, Barthélémy A, et al. Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer. J Clin Oncol. 2013;31(18):2273–81.CrossRefPubMed Pailler E, Adam J, Barthélémy A, et al. Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer. J Clin Oncol. 2013;31(18):2273–81.CrossRefPubMed
33.
35.
go back to reference Hu Z, Lin D, Yuan J, et al. Overexpression of osteopontin is associated with more aggressive phenotypes in human non-small cell lung cancer. Clin Cancer Res. 2005;11:4646–52.CrossRefPubMed Hu Z, Lin D, Yuan J, et al. Overexpression of osteopontin is associated with more aggressive phenotypes in human non-small cell lung cancer. Clin Cancer Res. 2005;11:4646–52.CrossRefPubMed
36.
go back to reference Donati V, Boldrini L, Dell'Omodarme M, et al. Osteopontin expression and prognostic significance in non-small cell lung cancer. Clin Cancer Res. 2005;11:6459–65.CrossRefPubMed Donati V, Boldrini L, Dell'Omodarme M, et al. Osteopontin expression and prognostic significance in non-small cell lung cancer. Clin Cancer Res. 2005;11:6459–65.CrossRefPubMed
37.
go back to reference Le QT, Sutphin PD, Raychaudhuri S, et al. Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res. 2003;9:59–67.PubMed Le QT, Sutphin PD, Raychaudhuri S, et al. Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res. 2003;9:59–67.PubMed
38.
go back to reference Rudland PS, Platt-Higgins A, El-Tanani M, et al. Prognostic significance of the metastasis- associated protein osteopontin in human breast cancer. Cancer Res. 2002;62:3417–27.PubMed Rudland PS, Platt-Higgins A, El-Tanani M, et al. Prognostic significance of the metastasis- associated protein osteopontin in human breast cancer. Cancer Res. 2002;62:3417–27.PubMed
39.
go back to reference Agrawal D, Chen T, Irby R, et al. Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst. 2002;94:513–21.CrossRefPubMed Agrawal D, Chen T, Irby R, et al. Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst. 2002;94:513–21.CrossRefPubMed
40.
go back to reference Mack PC, Redman MW, Chansky K, et al. Lower osteopontin plasma levels are associated with superior outcomes in advanced non-small-cell lung cancer patients receiving platinum-based chemotherapy: SWOG Study S0003. J Clin Oncol. 2008;26:4771–6.CrossRefPubMedPubMedCentral Mack PC, Redman MW, Chansky K, et al. Lower osteopontin plasma levels are associated with superior outcomes in advanced non-small-cell lung cancer patients receiving platinum-based chemotherapy: SWOG Study S0003. J Clin Oncol. 2008;26:4771–6.CrossRefPubMedPubMedCentral
41.
go back to reference Takenaka M, Hanagiri T, Shinohara S, et al. Serum level of osteopontin as a prognostic factor in patients who underwent surgical resection for non-small-cell lung cancer. Clin Lung Cancer. 2013;14(3):288–94.CrossRefPubMed Takenaka M, Hanagiri T, Shinohara S, et al. Serum level of osteopontin as a prognostic factor in patients who underwent surgical resection for non-small-cell lung cancer. Clin Lung Cancer. 2013;14(3):288–94.CrossRefPubMed
42.
go back to reference Yamaguchi M, Sugio K, Ondo K, et al. Reduced expression of thrombospondin-1 correlates with a poor prognosis in patients with non-small cell lung cancer. Lung Cancer. 2002;36(2):143–50.CrossRefPubMed Yamaguchi M, Sugio K, Ondo K, et al. Reduced expression of thrombospondin-1 correlates with a poor prognosis in patients with non-small cell lung cancer. Lung Cancer. 2002;36(2):143–50.CrossRefPubMed
43.
go back to reference Grossfeld GD, Ginsberg DA, Stein JP, et al. Thrombospondin-1 expression in bladder cancer: association with p53 alterations, tumor angiogenesis, and tumor progression. J Natl Cancer Inst. 1997;89(3):219–27.CrossRefPubMed Grossfeld GD, Ginsberg DA, Stein JP, et al. Thrombospondin-1 expression in bladder cancer: association with p53 alterations, tumor angiogenesis, and tumor progression. J Natl Cancer Inst. 1997;89(3):219–27.CrossRefPubMed
44.
go back to reference Zabrenetzky V, Harris CC, Steeg PS, et al. Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int J Cancer. 1994;59:191–5.CrossRefPubMed Zabrenetzky V, Harris CC, Steeg PS, et al. Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int J Cancer. 1994;59:191–5.CrossRefPubMed
45.
go back to reference Weinstat-Saslow DL, Zabrenetzky VS, VanHoutte K, et al. Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, meta- static potential, and angiogenesis. Cancer Res. 1994;54:6504–11.PubMed Weinstat-Saslow DL, Zabrenetzky VS, VanHoutte K, et al. Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, meta- static potential, and angiogenesis. Cancer Res. 1994;54:6504–11.PubMed
Metadata
Title
Osteopontin and thrombospondin-1 play opposite roles in promoting tumor aggressiveness of primary resected non-small cell lung cancer
Authors
Mathieu Rouanne
Julien Adam
Aïcha Goubar
Angélique Robin
Caroline Ohana
Emilie Louvet
Jiemin Cormier
Olaf Mercier
Peter Dorfmüller
Soly Fattal
Vincent Thomas de Montpreville
Thierry Lebret
Philippe Dartevelle
Elie Fadel
Benjamin Besse
Ken André Olaussen
Christian Auclair
Jean-Charles Soria
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2541-5

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine