Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

CPP2-p16MIS treatment–induced colon carcinoma cell death in vitro and prolonged lifespan of tumor-bearing mice

Authors: Lifeng Wang, Haijin Chen, Jinlong Yu, Xiaohua Lin, Jia Qi, Chunhui Cui, Lang Xie, Shuxin Huang

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Cell-penetrating peptides (CPPs) are a research hotspot due to their noninvasive delivery ability. Among the identified CPPs, the TAT and R8 peptides have been preferentially applied to transduction into different cells. However, this process is nonselective among various cells. Recent research suggested that CPP2 could selectively penetrate human colorectal cancer (CRC) cells.

Methods

Using in vitro experiments, the mean fluorescence intensity of fluorescein isothiocyanate–labeled CPPs (CPPs-FITC) incubated with different cell lines was compared to corroborate the colon tumor targeting ability of CPP2. The targeting ability of CPP2 was determined in the same way in tumor-bearing mice. We synthesized antitumor peptides by fusing CPP2 to the minimal inhibitory sequence of p16 (p16MIS), which had the ability to restore the function of lost p16, the expression of which was absent in tumor cell lines of various origins. The antitumor effect of the combined peptide was tested in both CRC cell lines and tumor-bearing mice.

Results

In each CRC cell line, the mean fluorescence intensity of CPP2-FITC was higher than that of the TAT-FITC (p < 0.001) and R8-FITC (p < 0.001) groups. CPP2-p16MIS, the targeting carrier, showed a higher antitumor response in the in vitro cell research. CPP2-p16MIS showed a prolonged mean lifespan of tumor-bearing mice, further characterizing its role in specific tumor-targeting ability in vivo. Survival analysis showed that the mice treated with CPP2-p16MIS had significantly longer survival than the mice treated with phosphate-buffered saline (p < 0.05) or those treated with control peptides, including the CPP2 (p < 0.05) and p16MIS (p < 0.05) groups.

Conclusion

CPP2 could more selectively penetrate CRC cells than TAT or R8 as well as effectively deliver the p16MIS to the tumor.
Literature
1.
2.
go back to reference Deshayes S, Morris M, Heitz F, Divita G. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Deliv Rev. 2008;60(4-5):537–47.CrossRefPubMed Deshayes S, Morris M, Heitz F, Divita G. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Deliv Rev. 2008;60(4-5):537–47.CrossRefPubMed
3.
go back to reference Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A. 1994;91(2):664–8.CrossRefPubMedPubMedCentral Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A. 1994;91(2):664–8.CrossRefPubMedPubMedCentral
4.
go back to reference Johnson LN, Cashman SM, Kumar-Singh R. Cell-penetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea. Mol Ther. 2008;16(1):107–14.CrossRefPubMed Johnson LN, Cashman SM, Kumar-Singh R. Cell-penetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea. Mol Ther. 2008;16(1):107–14.CrossRefPubMed
5.
go back to reference Chiu YL, Ali A, Chu CY, Cao H, Rana TM. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol. 2004;11(8):1165–75.CrossRefPubMed Chiu YL, Ali A, Chu CY, Cao H, Rana TM. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol. 2004;11(8):1165–75.CrossRefPubMed
6.
go back to reference Turner JJ, Ivanova GD, Verbeure B, Williams D, Arzumanov AA, Abes S, Lebleu B, Gait MJ. Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells. Nucleic Acids Res. 2005;33(21):6837–49.CrossRefPubMedPubMedCentral Turner JJ, Ivanova GD, Verbeure B, Williams D, Arzumanov AA, Abes S, Lebleu B, Gait MJ. Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells. Nucleic Acids Res. 2005;33(21):6837–49.CrossRefPubMedPubMedCentral
7.
go back to reference Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, Wender PA, Khavari PA. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med. 2000;6(11):1253–7.CrossRefPubMed Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, Wender PA, Khavari PA. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med. 2000;6(11):1253–7.CrossRefPubMed
8.
go back to reference Yukawa H, Kagami Y, Watanabe M, Oishi K, Miyamoto Y, Okamoto Y, Tokeshi M, Kaji N, Noguchi H, Ono K, et al. Quantum dots labeling using octa-arginine peptides for imaging of adipose tissue-derived stem cells. Biomaterials. 2010;31(14):4094–103.CrossRefPubMed Yukawa H, Kagami Y, Watanabe M, Oishi K, Miyamoto Y, Okamoto Y, Tokeshi M, Kaji N, Noguchi H, Ono K, et al. Quantum dots labeling using octa-arginine peptides for imaging of adipose tissue-derived stem cells. Biomaterials. 2010;31(14):4094–103.CrossRefPubMed
9.
go back to reference Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol. 2000;18(4):410–4.CrossRefPubMed Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol. 2000;18(4):410–4.CrossRefPubMed
10.
go back to reference Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, Ezhevsky SA, Dowdy SF. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med. 1998;4(12):1449–52.CrossRefPubMed Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, Ezhevsky SA, Dowdy SF. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med. 1998;4(12):1449–52.CrossRefPubMed
11.
go back to reference Wadia JS, Dowdy SF. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv Drug Deliv Rev. 2005;57(4):579–96.CrossRefPubMed Wadia JS, Dowdy SF. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv Drug Deliv Rev. 2005;57(4):579–96.CrossRefPubMed
12.
go back to reference Liu Y, Kim YJ, Ji M, Fang J, Siriwon N, Zhang LI, Wang P. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides. Mol Ther Methods Clin Dev. 2014;1:12.CrossRefPubMedPubMedCentral Liu Y, Kim YJ, Ji M, Fang J, Siriwon N, Zhang LI, Wang P. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides. Mol Ther Methods Clin Dev. 2014;1:12.CrossRefPubMedPubMedCentral
13.
go back to reference Marcucci F, Lefoulon F. Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discov Today. 2004;9(5):219–28.CrossRefPubMed Marcucci F, Lefoulon F. Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discov Today. 2004;9(5):219–28.CrossRefPubMed
14.
go back to reference Foged C, Nielsen HM. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv. 2008;5(1):105–17.CrossRefPubMed Foged C, Nielsen HM. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv. 2008;5(1):105–17.CrossRefPubMed
15.
go back to reference Alberici L, Roth L, Sugahara KN, Agemy L, Kotamraju VR, Teesalu T, Bordignon C, Traversari C, Rizzardi GP, Ruoslahti E. De novo design of a tumor-penetrating peptide. Cancer Res. 2013;73(2):804–12.CrossRefPubMed Alberici L, Roth L, Sugahara KN, Agemy L, Kotamraju VR, Teesalu T, Bordignon C, Traversari C, Rizzardi GP, Ruoslahti E. De novo design of a tumor-penetrating peptide. Cancer Res. 2013;73(2):804–12.CrossRefPubMed
16.
go back to reference Geisler I, Chmielewski J. Cationic amphiphilic polyproline helices: side-chain variations and cell-specific internalization. Chem Biol Drug Des. 2009;73(1):39–45.CrossRefPubMed Geisler I, Chmielewski J. Cationic amphiphilic polyproline helices: side-chain variations and cell-specific internalization. Chem Biol Drug Des. 2009;73(1):39–45.CrossRefPubMed
17.
go back to reference Kondo E, Saito K, Tashiro Y, Kamide K, Uno S, Furuya T, Mashita M, Nakajima K, Tsumuraya T, Kobayashi N, et al. Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems. Nat Commun. 2012;3:951.CrossRefPubMed Kondo E, Saito K, Tashiro Y, Kamide K, Uno S, Furuya T, Mashita M, Nakajima K, Tsumuraya T, Kobayashi N, et al. Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems. Nat Commun. 2012;3:951.CrossRefPubMed
18.
go back to reference Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55(20):4525–30.PubMed Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55(20):4525–30.PubMed
19.
go back to reference Pinyol M, Cobo F, Bea S, Jares P, Nayach I, Fernandez PL, Montserrat E, Cardesa A, Campo E. p16(INK4a) gene inactivation by deletions, mutations, and hypermethylation is associated with transformed and aggressive variants of non-Hodgkin's lymphomas. Blood. 1998;91(8):2977–84.PubMed Pinyol M, Cobo F, Bea S, Jares P, Nayach I, Fernandez PL, Montserrat E, Cardesa A, Campo E. p16(INK4a) gene inactivation by deletions, mutations, and hypermethylation is associated with transformed and aggressive variants of non-Hodgkin's lymphomas. Blood. 1998;91(8):2977–84.PubMed
20.
go back to reference Goto T, Mizukami H, Shirahata A, Yokomizo K, Kitamura YH, Sakuraba K, Saito M, Ishibashi K, Kigawa G, Nemoto H, et al. Methylation of the p16 gene is frequently detected in lymphatic-invasive gastric cancer. Anticancer Res. 2010;30(7):2701–3.PubMed Goto T, Mizukami H, Shirahata A, Yokomizo K, Kitamura YH, Sakuraba K, Saito M, Ishibashi K, Kigawa G, Nemoto H, et al. Methylation of the p16 gene is frequently detected in lymphatic-invasive gastric cancer. Anticancer Res. 2010;30(7):2701–3.PubMed
21.
go back to reference Fahraeus R, Lain S, Ball KL, Lane DP. Characterization of the cyclin-dependent kinase inhibitory domain of the INK4 family as a model for a synthetic tumour suppressor molecule. Oncogene. 1998;16(5):587–96.CrossRefPubMed Fahraeus R, Lain S, Ball KL, Lane DP. Characterization of the cyclin-dependent kinase inhibitory domain of the INK4 family as a model for a synthetic tumour suppressor molecule. Oncogene. 1998;16(5):587–96.CrossRefPubMed
22.
go back to reference Kondo E, Seto M, Yoshikawa K, Yoshino T. Highly efficient delivery of p16 antitumor peptide into aggressive leukemia/lymphoma cells using a novel transporter system. Mol Cancer Ther. 2004;3(12):1623–30.PubMed Kondo E, Seto M, Yoshikawa K, Yoshino T. Highly efficient delivery of p16 antitumor peptide into aggressive leukemia/lymphoma cells using a novel transporter system. Mol Cancer Ther. 2004;3(12):1623–30.PubMed
23.
go back to reference Kondo E, Tanaka T, Miyake T, Ichikawa T, Hirai M, Adachi M, Yoshikawa K, Ichimura K, Ohara N, Moriwaki A, et al. Potent synergy of dual antitumor peptides for growth suppression of human glioblastoma cell lines. Mol Cancer Ther. 2008;7(6):1461–71.CrossRefPubMed Kondo E, Tanaka T, Miyake T, Ichikawa T, Hirai M, Adachi M, Yoshikawa K, Ichimura K, Ohara N, Moriwaki A, et al. Potent synergy of dual antitumor peptides for growth suppression of human glioblastoma cell lines. Mol Cancer Ther. 2008;7(6):1461–71.CrossRefPubMed
24.
go back to reference Lin Y, Zhang H, Liang J, Li K, Zhu W, Fu L, Wang F, Zheng X, Shi H, Wu S, et al. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc Natl Acad Sci U S A. 2014;111(42):E4504–12.CrossRefPubMedPubMedCentral Lin Y, Zhang H, Liang J, Li K, Zhu W, Fu L, Wang F, Zheng X, Shi H, Wu S, et al. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc Natl Acad Sci U S A. 2014;111(42):E4504–12.CrossRefPubMedPubMedCentral
25.
go back to reference Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem. 1994;269(14):10444–50.PubMed Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem. 1994;269(14):10444–50.PubMed
26.
go back to reference Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem. 2001;276(8):5836–40.CrossRefPubMed Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem. 2001;276(8):5836–40.CrossRefPubMed
27.
go back to reference Lim KJ, Sung BH, Shin JR, Lee YW, da Kim J, Yang KS, Kim SC. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells. PLoS One. 2013;8(6):e66084.CrossRefPubMedPubMedCentral Lim KJ, Sung BH, Shin JR, Lee YW, da Kim J, Yang KS, Kim SC. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells. PLoS One. 2013;8(6):e66084.CrossRefPubMedPubMedCentral
28.
go back to reference van Duijnhoven SM, Robillard MS, Nicolay K, Grull H. Tumor targeting of MMP-2/9 activatable cell-penetrating imaging probes is caused by tumor-independent activation. J Nucl Med. 2011;52(2):279–86.CrossRefPubMed van Duijnhoven SM, Robillard MS, Nicolay K, Grull H. Tumor targeting of MMP-2/9 activatable cell-penetrating imaging probes is caused by tumor-independent activation. J Nucl Med. 2011;52(2):279–86.CrossRefPubMed
29.
go back to reference Tian H, Lin L, Chen J, Chen X, Park TG, Maruyama A. RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers. J Control Release. 2011;155(1):47–53.CrossRefPubMed Tian H, Lin L, Chen J, Chen X, Park TG, Maruyama A. RGD targeting hyaluronic acid coating system for PEI-PBLG polycation gene carriers. J Control Release. 2011;155(1):47–53.CrossRefPubMed
Metadata
Title
CPP2-p16MIS treatment–induced colon carcinoma cell death in vitro and prolonged lifespan of tumor-bearing mice
Authors
Lifeng Wang
Haijin Chen
Jinlong Yu
Xiaohua Lin
Jia Qi
Chunhui Cui
Lang Xie
Shuxin Huang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2498-4

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine