Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

The occurrence of non-melanoma malignant skin lesions and non-cutaneous squamous-cell carcinoma among metastatic melanoma patients: an observational cohort study in Denmark

Authors: Haojie Li, Lars Pedersen, Mette Nørgaard, Sinna P. Ulrichsen, Sandra K. Thygesen, Jeanenne J. Nelson

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Inhibitors of mutant BRAF are emerging as standard of care in patients with metastatic melanoma who carry relevant oncogenic mutations. However, BRAF inhibitors are found to induce cutaneous squamous cell carcinoma (cuSCC). Population-based background rates of cuSCC and non-cutaneous squamous cell carcinoma (non-cuSCC) in the metastatic melanoma population may contextualize safety signals from randomized clinical trials or the clinics. However, these background rates are lacking.

Methods

We conducted a historical cohort study to evaluate the background rates of new-onset non-melanoma skin lesions and non-cuSCC among 2,814 metastatic malignant melanoma patients diagnosed in 1997–2010, identified through the Danish Cancer Registry and the National Pathology Registry. Patients were excluded if they had a history of cancer before the metastatic melanoma diagnosis, other than skin cancers. We determined the incidence of non-melanoma malignant skin lesions and non-cuSCC that occurred post metastatic melanoma diagnosis, censoring patients at death, emigration, or December 31, 2011 (end of study period), whichever came first.

Results

The median age at metastatic melanoma diagnosis was 64 years. Over 40 % of patients died within one year of metastatic diagnosis and ~70 % died within 5 years. The percentages of patients with prior history or prevalent disease at metastatic melanoma diagnosis included: 8.6 % with cuSCC or basal cell carcinoma (BCC), 3.9 % with actinic keratosis (AK), and 0.7 % with Bowen’s disease. No patients had past or current non-cuSCC per study exclusion criterion. The incidence of non-melanoma skin lesions during the 6 months post-metastatic melanoma diagnosis was as follows: BCC, 1.8 % (42.5 per 1000 person-years [PY]); AK, 0.8 % (18.6 per 1000 PY); cuSCC, 0.1 % (1.7 per 1000 PY); Bowen’s disease, 0.04 % (0.8 per 1000 PY); and keratoacanthoma (KA), 0 %. Non-cuSCC was observed in 3 patients (0.1 %; 2.5 per 1000 PY) at 3 sites: bronchi, heart and lung.

Conclusion

CuSCC and non-cuSCC were rare events among metastatic melanoma patients.
Appendix
Available only for authorised users
Literature
2.
go back to reference Garbe C, Eigentler TK, Keilholz U, et al. Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist. 2011;16:5–24.CrossRefPubMedPubMedCentral Garbe C, Eigentler TK, Keilholz U, et al. Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist. 2011;16:5–24.CrossRefPubMedPubMedCentral
3.
4.
go back to reference Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.CrossRefPubMed Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.CrossRefPubMed
5.
go back to reference Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.CrossRefPubMed Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358–65.CrossRefPubMed
6.
7.
go back to reference Wolchok JD, Weber JS, Maio M, et al. Four-year survival rates for patients with metastatic melanoma who received ipilimumab in phase II clinical trials. Ann Oncol. 2013;24:2174–80.CrossRefPubMedPubMedCentral Wolchok JD, Weber JS, Maio M, et al. Four-year survival rates for patients with metastatic melanoma who received ipilimumab in phase II clinical trials. Ann Oncol. 2013;24:2174–80.CrossRefPubMedPubMedCentral
8.
go back to reference ZELBORAF Prescribing Information (USPI, United States Product Insert), in, 2011 ZELBORAF Prescribing Information (USPI, United States Product Insert), in, 2011
9.
go back to reference TAFINLAR Prescribing Information (USPI, United States Product Insert), in, 2014 TAFINLAR Prescribing Information (USPI, United States Product Insert), in, 2014
10.
go back to reference Anforth RM, Blumetti TC, Kefford RF, et al. Cutaneous manifestations of dabrafenib (GSK2118436): a selective inhibitor of mutant BRAF in patients with metastatic melanoma. Br J Dermatol. 2012;167:1153–60.CrossRefPubMed Anforth RM, Blumetti TC, Kefford RF, et al. Cutaneous manifestations of dabrafenib (GSK2118436): a selective inhibitor of mutant BRAF in patients with metastatic melanoma. Br J Dermatol. 2012;167:1153–60.CrossRefPubMed
11.
go back to reference Kefford R, Arkenau H, Brown MP, et al. Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. J Clin Oncol. 2010;28:8503. abstr.CrossRef Kefford R, Arkenau H, Brown MP, et al. Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumors. J Clin Oncol. 2010;28:8503. abstr.CrossRef
12.
go back to reference Ribas A, Kim KB, Schuchter LM, et al. BRIM-2: An open-label, multicenter phase II study of RG7204 (PLX4032) in previously treated patients with BRAF V600E mutation-positive metastatic melanoma. J Clin Oncol (ASCO Annual Meeting Abstracts) 2011;29:8509. Ribas A, Kim KB, Schuchter LM, et al. BRIM-2: An open-label, multicenter phase II study of RG7204 (PLX4032) in previously treated patients with BRAF V600E mutation-positive metastatic melanoma. J Clin Oncol (ASCO Annual Meeting Abstracts) 2011;29:8509.
13.
go back to reference Clausen OP, Aass HC, Beigi M, et al. Are keratoacanthomas variants of squamous cell carcinomas? A comparison of chromosomal aberrations by comparative genomic hybridization. J Invest Dermatol. 2006;126:2308–15.CrossRefPubMedPubMedCentral Clausen OP, Aass HC, Beigi M, et al. Are keratoacanthomas variants of squamous cell carcinomas? A comparison of chromosomal aberrations by comparative genomic hybridization. J Invest Dermatol. 2006;126:2308–15.CrossRefPubMedPubMedCentral
14.
15.
go back to reference Ledo E. Wart, keratoacanthoma, and squamous cell carcinoma: a spectrum of the same neoplastic process? Int J Dermatol. 1992;31:777–8.CrossRefPubMed Ledo E. Wart, keratoacanthoma, and squamous cell carcinoma: a spectrum of the same neoplastic process? Int J Dermatol. 1992;31:777–8.CrossRefPubMed
16.
go back to reference Cribier B, Asch P, Grosshans E. Differentiating squamous cell carcinoma from keratoacanthoma using histopathological criteria. Is it possible? A study of 296 cases. Dermatology. 1999;199:208–12.CrossRefPubMed Cribier B, Asch P, Grosshans E. Differentiating squamous cell carcinoma from keratoacanthoma using histopathological criteria. Is it possible? A study of 296 cases. Dermatology. 1999;199:208–12.CrossRefPubMed
17.
go back to reference Hodak E, Jones RE, Ackerman AB. Solitary keratoacanthoma is a squamous-cell carcinoma: three examples with metastases. Am J Dermatopathol. 1993;15:332–42.CrossRefPubMed Hodak E, Jones RE, Ackerman AB. Solitary keratoacanthoma is a squamous-cell carcinoma: three examples with metastases. Am J Dermatopathol. 1993;15:332–42.CrossRefPubMed
18.
go back to reference Magalhaes RF, Cruvinel GT, Cintra GF, et al. Diagnosis and follow-up of keratoacanthoma-like lesions: clinical-histologic study of 43 cases. J Cutan Med Surg. 2008;12:163–73.CrossRefPubMed Magalhaes RF, Cruvinel GT, Cintra GF, et al. Diagnosis and follow-up of keratoacanthoma-like lesions: clinical-histologic study of 43 cases. J Cutan Med Surg. 2008;12:163–73.CrossRefPubMed
19.
go back to reference Patel A, Halliday GM, Cooke BE, et al. Evidence that regression in keratoacanthoma is immunologically mediated: a comparison with squamous cell carcinoma. Br J Dermatol. 1994;131:789–98.CrossRefPubMed Patel A, Halliday GM, Cooke BE, et al. Evidence that regression in keratoacanthoma is immunologically mediated: a comparison with squamous cell carcinoma. Br J Dermatol. 1994;131:789–98.CrossRefPubMed
20.
go back to reference Goldenhersh MA, Olsen TG. Invasive squamous cell carcinoma initially diagnosed as a giant keratoacanthoma. J Am Acad Dermatol. 1984;10:372–8.CrossRefPubMed Goldenhersh MA, Olsen TG. Invasive squamous cell carcinoma initially diagnosed as a giant keratoacanthoma. J Am Acad Dermatol. 1984;10:372–8.CrossRefPubMed
22.
go back to reference Storm HH, Michelsen EV, Clemmensen IH, et al. The Danish Cancer Registry--history, content, quality and use. Dan Med Bull. 1997;44:535–9.PubMed Storm HH, Michelsen EV, Clemmensen IH, et al. The Danish Cancer Registry--history, content, quality and use. Dan Med Bull. 1997;44:535–9.PubMed
23.
go back to reference Erichsen R, Lash TL, Hamilton-Dutoit SJ, et al. Existing data sources for clinical epidemiology: the Danish National Pathology Registry and Data Bank. Clin Epidemiol. 2010;2:51–6.CrossRefPubMedPubMedCentral Erichsen R, Lash TL, Hamilton-Dutoit SJ, et al. Existing data sources for clinical epidemiology: the Danish National Pathology Registry and Data Bank. Clin Epidemiol. 2010;2:51–6.CrossRefPubMedPubMedCentral
25.
go back to reference Schmidt M, Pedersen L, Sorensen HT. The danish civil registration system as a tool in epidemiology. Eur J Epidemiol. 2014;29(8):541-549. Schmidt M, Pedersen L, Sorensen HT. The danish civil registration system as a tool in epidemiology. Eur J Epidemiol. 2014;29(8):541-549.
26.
go back to reference Simon R. Confidence intervals for reporting results of clinical trials. Ann Intern Med. 1986;105:429–35.CrossRefPubMed Simon R. Confidence intervals for reporting results of clinical trials. Ann Intern Med. 1986;105:429–35.CrossRefPubMed
27.
go back to reference Parkin DM, Chen VW, Ferlay J, Galceran J, Storm HH, Whelan SL, editors. Comparability and quality control in cancer registration. (IARC Technical Report No. 19). Lyon: IARC (WHO) and IACR; 1994 Parkin DM, Chen VW, Ferlay J, Galceran J, Storm HH, Whelan SL, editors. Comparability and quality control in cancer registration. (IARC Technical Report No. 19). Lyon: IARC (WHO) and IACR; 1994
28.
go back to reference Sorensen HT, Christensen T, Schlosser HK, et al. Use of medical databases in clinical epidemiology. Department of Clinical Epidemiology, Aarhus, Denmark: SUN-TRYK, Aarhus University; 2009 Sorensen HT, Christensen T, Schlosser HK, et al. Use of medical databases in clinical epidemiology. Department of Clinical Epidemiology, Aarhus, Denmark: SUN-TRYK, Aarhus University; 2009
29.
go back to reference Birch-Johansen F, Jensen A, Mortensen L, et al. Trends in the incidence of nonmelanoma skin cancer in Denmark 1978–2007: Rapid incidence increase among young Danish women. Int J Cancer. 2010;127:2190–8.CrossRefPubMed Birch-Johansen F, Jensen A, Mortensen L, et al. Trends in the incidence of nonmelanoma skin cancer in Denmark 1978–2007: Rapid incidence increase among young Danish women. Int J Cancer. 2010;127:2190–8.CrossRefPubMed
Metadata
Title
The occurrence of non-melanoma malignant skin lesions and non-cutaneous squamous-cell carcinoma among metastatic melanoma patients: an observational cohort study in Denmark
Authors
Haojie Li
Lars Pedersen
Mette Nørgaard
Sinna P. Ulrichsen
Sandra K. Thygesen
Jeanenne J. Nelson
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2315-0

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine