Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

Accelerated hypofractionated three-dimensional conformal radiation therapy (3 Gy/fraction) combined with concurrent chemotherapy for patients with unresectable stage III non-small cell lung cancer: preliminary results of an early terminated phase II trial

Authors: Xiao-Cang Ren, Quan-Yu Wang, Rui Zhang, Xue-Ji Chen, Na Wang, Yue-E Liu, Jie Zong, Zhi-Jun Guo, Dong-Ying Wang, Qiang Lin

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Increasing the biological effective dose (BED) of radiotherapy for non-small cell lung cancer (NSCLC) can increase local control rates and improve overall survival. Compared with conventional fractionated radiotherapy, accelerated hypofractionated radiotherapy can yield higher BED, shorten the total treatment time, and theoretically obtain better efficacy. However, currently, there is no optimal hypofractionated radiotherapy regimen. Based on phase I trial results, we performed this phase II trial to further evaluate the safety and preliminary efficacy of accelerated hypofractionated three-dimensional conformal radiation therapy(3-DCRT) combined with concurrent chemotherapy for patients with unresectable stage III NSCLC.

Methods

Patients with previously untreated unresectable stage III NSCLC received 3-DCRT with a total dose of 69 Gy, delivered at 3 Gy per fraction, once daily, five fractions per week, completed within 4.6 weeks. At the same time, platinum doublet chemotherapy was applied.

Results

After 12 patients were enrolled in the group, the trial was terminated early. There were five cases of grade III radiation esophagitis, of which four cases completed the radiation doses of 51 Gy, 51 Gy, 54 Gy, and 66 Gy, and one case had 16 days of radiation interruption. The incidence of grade III acute esophagitis in patients receiving an irradiation dose per fraction ≥2.7 Gy on the esophagus was 83.3 % (5/6). The incidence of symptomatic grade III radiation pneumonitis among the seven patients who completed 69 Gy according to the plan was 28.6 % (2/7). The median local control (LC) and overall survival (OS) were not achieved; the 1-year LC rate was 59.3 %, and the 1-year OS rate was 78.6 %.

Conclusion

For unresectable stage III NSCLC, the accelerated hypofractionated radiotherapy with a total dose of 69 Gy (3 Gy/f) combined with concurrent chemotherapy might result in severe radiation esophagitis and pneumonitis to severely affect the completion of the radiotherapy. Therefore, we considered that this regimen was infeasible. During the hypofractionated radiotherapy with concurrent chemotherapy, the irradiation dose per fraction to esophagus should be lower than 2.7 Gy. Further studies should be performed using esophageal tolerance as a metric in dose escalation protocols.

Trial registration

NCT02720614, the date of registration: March 23, 2016.
Literature
1.
go back to reference Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMed Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMed
2.
go back to reference Chen W, Zheng R, Zhang S, Zhao P, Hongmei Z, Zou X. Report of cancer incidence and mortality in China, 2010. Annals of Trans Med. 2014;2:61. Chen W, Zheng R, Zhang S, Zhao P, Hongmei Z, Zou X. Report of cancer incidence and mortality in China, 2010. Annals of Trans Med. 2014;2:61.
3.
go back to reference Bayman N, Blackhall F, McCloskey P, Taylor P, Faivre-Finn C. How can we optimise concurrent chemoradiotherapy for inoperable stage III non-small cell lung cancer? Lung Cancer. 2014;83:117–25.CrossRefPubMed Bayman N, Blackhall F, McCloskey P, Taylor P, Faivre-Finn C. How can we optimise concurrent chemoradiotherapy for inoperable stage III non-small cell lung cancer? Lung Cancer. 2014;83:117–25.CrossRefPubMed
4.
go back to reference Aupérin A, Le Péchoux C, Rolland E, Curran WJ, Furuse K, Fournel P, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010;28:2181–90.CrossRefPubMed Aupérin A, Le Péchoux C, Rolland E, Curran WJ, Furuse K, Fournel P, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010;28:2181–90.CrossRefPubMed
5.
go back to reference Kong FM, Ten Haken RK, Schipper MJ, Sullivan MA, Chen M, Lopez C, et al. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: Long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys. 2005;63:324–33.CrossRefPubMed Kong FM, Ten Haken RK, Schipper MJ, Sullivan MA, Chen M, Lopez C, et al. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: Long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys. 2005;63:324–33.CrossRefPubMed
6.
go back to reference Machtay M, Bae K, Movsas B, Paulus R, Gore EM, Komaki R, et al. Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non-small cell lung carcinoma treated with chemoradiation: an analysis of the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 2012;82:425–34.CrossRefPubMed Machtay M, Bae K, Movsas B, Paulus R, Gore EM, Komaki R, et al. Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non-small cell lung carcinoma treated with chemoradiation: an analysis of the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 2012;82:425–34.CrossRefPubMed
7.
go back to reference Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16:187–99.CrossRefPubMedPubMedCentral Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16:187–99.CrossRefPubMedPubMedCentral
8.
go back to reference Withers HR, Taylor JM, Maciejewski B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol. 1988;27:131–46.CrossRefPubMed Withers HR, Taylor JM, Maciejewski B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol. 1988;27:131–46.CrossRefPubMed
9.
go back to reference Koukourakis M, Hlouverakis G, Kosma L, Skarlatos J, Damilakis J, Giatromanolaki A, et al. The impact of overall treatment time on the results of radiotherapy for nonsmall cell lung carcinoma. Int J Radiat Oncol Biol Phys. 1996;34:315–22.CrossRefPubMed Koukourakis M, Hlouverakis G, Kosma L, Skarlatos J, Damilakis J, Giatromanolaki A, et al. The impact of overall treatment time on the results of radiotherapy for nonsmall cell lung carcinoma. Int J Radiat Oncol Biol Phys. 1996;34:315–22.CrossRefPubMed
10.
go back to reference Saunders M, Dische S, Barrett A, Harvey A, Griffiths G, Parmar M. Continuous, hyper-fractionated, accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomized multicentre trial. CHART Steering committee. Radiother Oncol. 1999;52:137–48.CrossRefPubMed Saunders M, Dische S, Barrett A, Harvey A, Griffiths G, Parmar M. Continuous, hyper-fractionated, accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomized multicentre trial. CHART Steering committee. Radiother Oncol. 1999;52:137–48.CrossRefPubMed
11.
go back to reference Beli I, Koukourakis G, Platoni K, Tolia M, Kelekis N, Kouvaris J, et al. Hypofractionated radiotherapy in non small cell lung cancer: a review of the current literature. Rev Recent Clin Trials. 2010;5:103–11.CrossRefPubMed Beli I, Koukourakis G, Platoni K, Tolia M, Kelekis N, Kouvaris J, et al. Hypofractionated radiotherapy in non small cell lung cancer: a review of the current literature. Rev Recent Clin Trials. 2010;5:103–11.CrossRefPubMed
12.
go back to reference Lester JF, Macbeth FR, Brewster AE, Court JB, Iqbal N. CT-planned accelerated hypofractionated radiotherapy in the radical treatment of non-small cell lung cancer. Lung Cancer. 2004;45:237–42.CrossRefPubMed Lester JF, Macbeth FR, Brewster AE, Court JB, Iqbal N. CT-planned accelerated hypofractionated radiotherapy in the radical treatment of non-small cell lung cancer. Lung Cancer. 2004;45:237–42.CrossRefPubMed
13.
go back to reference Oh D, Ahn YC, Kim B, Pyo H. Hypofractionated three-dimensional conformal radiation therapy alone for centrally located cT1-3 N0 non-small-cell lung cancer. J Thorac Oncol. 2013;8:624–9.CrossRefPubMed Oh D, Ahn YC, Kim B, Pyo H. Hypofractionated three-dimensional conformal radiation therapy alone for centrally located cT1-3 N0 non-small-cell lung cancer. J Thorac Oncol. 2013;8:624–9.CrossRefPubMed
14.
go back to reference Cheung P, Faria S, Ahmed S, Chabot P, Greenland J, Kurien E, et al. Phase II study of accelerated hypofractionated three-dimensional conformal radiotherapy for stage T1-3 N0 M0 non-small cell lung cancer: NCIC CTG BR. J Natl Cancer Inst. 2014;106:8.CrossRef Cheung P, Faria S, Ahmed S, Chabot P, Greenland J, Kurien E, et al. Phase II study of accelerated hypofractionated three-dimensional conformal radiotherapy for stage T1-3 N0 M0 non-small cell lung cancer: NCIC CTG BR. J Natl Cancer Inst. 2014;106:8.CrossRef
15.
go back to reference Souhami L, Portelance L, Duclos M, Vuong T, Small D, Freeman CR. Absence of toxicity with hypofractionated 3-dimensional radiation therapy for inoperable, early stage non-small cell lung cancer. Radiat Oncol. 2006;1:42.CrossRefPubMedPubMedCentral Souhami L, Portelance L, Duclos M, Vuong T, Small D, Freeman CR. Absence of toxicity with hypofractionated 3-dimensional radiation therapy for inoperable, early stage non-small cell lung cancer. Radiat Oncol. 2006;1:42.CrossRefPubMedPubMedCentral
16.
go back to reference Gomez DR, Gillin M, Liao Z, Wei C, Lin SH, Swanick C, et al. Phase 1 study of dose escalation in hypofractionated proton beam therapy for non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;86:665–70.CrossRefPubMedPubMedCentral Gomez DR, Gillin M, Liao Z, Wei C, Lin SH, Swanick C, et al. Phase 1 study of dose escalation in hypofractionated proton beam therapy for non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;86:665–70.CrossRefPubMedPubMedCentral
17.
go back to reference Amini A, Lin SH, Wei C, Allen P, Cox JD, Komaki R. Accelerated hypofractionated radiation therapy compared to conventionally fractionated radiation therapy for the treatment of inoperable non-small cell lung cancer. Radiat Oncol. 2012;7:33.CrossRefPubMedPubMedCentral Amini A, Lin SH, Wei C, Allen P, Cox JD, Komaki R. Accelerated hypofractionated radiation therapy compared to conventionally fractionated radiation therapy for the treatment of inoperable non-small cell lung cancer. Radiat Oncol. 2012;7:33.CrossRefPubMedPubMedCentral
18.
go back to reference McPartlin AJ, Chaudhry S, Swindell R, Bayman N, Burt P, Chittalia A, et al. The largest UK single centre series using hypofractionated radical radiotherapy for NSCLC in the very elderly. Lung Cancer. 2013;81:144.CrossRefPubMed McPartlin AJ, Chaudhry S, Swindell R, Bayman N, Burt P, Chittalia A, et al. The largest UK single centre series using hypofractionated radical radiotherapy for NSCLC in the very elderly. Lung Cancer. 2013;81:144.CrossRefPubMed
19.
go back to reference Thirion P, Holmberg O, Collins CD, O’Shea C, Moriarty M, Pomeroy M, et al. Escalated dose for non-small-cell lung cancer with accelerated hypofractionated three-dimensional conformal radiation therapy. Radiother Oncol. 2004;71:163–6.CrossRefPubMed Thirion P, Holmberg O, Collins CD, O’Shea C, Moriarty M, Pomeroy M, et al. Escalated dose for non-small-cell lung cancer with accelerated hypofractionated three-dimensional conformal radiation therapy. Radiother Oncol. 2004;71:163–6.CrossRefPubMed
20.
go back to reference Duchateau M, Versmessen H, Engels B, Tournel K, Vinh-Hung V, De Ridder M, et al. Toxicity and outcome results of a class solution with moderately hypofractionated radiotherapy in inoperable Stage III non-small cell lung cancer using helical tomotherapy. Int J Radiat Oncol Biol Phys. 2010;77:1352–9.CrossRefPubMed Duchateau M, Versmessen H, Engels B, Tournel K, Vinh-Hung V, De Ridder M, et al. Toxicity and outcome results of a class solution with moderately hypofractionated radiotherapy in inoperable Stage III non-small cell lung cancer using helical tomotherapy. Int J Radiat Oncol Biol Phys. 2010;77:1352–9.CrossRefPubMed
21.
go back to reference Kepka L, Tyc-Szczepaniak D, Bujko K. Dose-per-fraction escalation of accelerated hypofractionated three-dimensional conformal radiotherapy in locally advanced non-small cell lung cancer. J Thorac Oncol. 2009;4:853–61.CrossRefPubMed Kepka L, Tyc-Szczepaniak D, Bujko K. Dose-per-fraction escalation of accelerated hypofractionated three-dimensional conformal radiotherapy in locally advanced non-small cell lung cancer. J Thorac Oncol. 2009;4:853–61.CrossRefPubMed
22.
go back to reference Tho LM, Mahmood R, Leitch M, Brisbane I, Kakumanu S, Mohammed N. Oesophageal toxicity and hypofractionated concurrent chemoradiotherapy for non-small cell lung cancer. Clin Oncol (R Coll Radiol). 2009;21(1):74.CrossRef Tho LM, Mahmood R, Leitch M, Brisbane I, Kakumanu S, Mohammed N. Oesophageal toxicity and hypofractionated concurrent chemoradiotherapy for non-small cell lung cancer. Clin Oncol (R Coll Radiol). 2009;21(1):74.CrossRef
23.
go back to reference Uitterhoeve AL, Belderbos JS, Koolen MG, van der Vaart PJ, Rodrigus PT, Benraadt J, et al. Toxicity of high-dose radiotherapy combined with daily cisplatin in non-small cell lung cancer: results of the EORTC 08912 phase I/II study. European Organization for Research and Treatment of Cancer. Eur J Cancer. 2000;36:592–600.CrossRefPubMed Uitterhoeve AL, Belderbos JS, Koolen MG, van der Vaart PJ, Rodrigus PT, Benraadt J, et al. Toxicity of high-dose radiotherapy combined with daily cisplatin in non-small cell lung cancer: results of the EORTC 08912 phase I/II study. European Organization for Research and Treatment of Cancer. Eur J Cancer. 2000;36:592–600.CrossRefPubMed
24.
go back to reference Maguire J, Khan I, McMenemin R, O’Rourke N, McNee S, Kelly V, et al. SOCCAR: A randomised phase II trial comparing sequential versus concurrent chemotherapy and radical hypofractionated radiotherapy in patients with inoperable stage III Non-Small Cell Lung Cancer and good performance status. Eur J Cancer. 2014;50:2939–49.CrossRefPubMed Maguire J, Khan I, McMenemin R, O’Rourke N, McNee S, Kelly V, et al. SOCCAR: A randomised phase II trial comparing sequential versus concurrent chemotherapy and radical hypofractionated radiotherapy in patients with inoperable stage III Non-Small Cell Lung Cancer and good performance status. Eur J Cancer. 2014;50:2939–49.CrossRefPubMed
25.
go back to reference Kim JO, Chu KP, Fairchild A, Ghosh S, Butts C, Chu Q, et al. Dose-escalated Hypofractionated Intensity-modulated Radiation Therapy With Concurrent Chemotherapy for Inoperable or Unresectable Non-Small Cell Lung Cancer. Am J Clin Oncol. 2014. doi:10.1097/COC.0000000000000140 [Epub ahead of print].PubMedCentral Kim JO, Chu KP, Fairchild A, Ghosh S, Butts C, Chu Q, et al. Dose-escalated Hypofractionated Intensity-modulated Radiation Therapy With Concurrent Chemotherapy for Inoperable or Unresectable Non-Small Cell Lung Cancer. Am J Clin Oncol. 2014. doi:10.​1097/​COC.​0000000000000140​ [Epub ahead of print].PubMedCentral
26.
go back to reference Koukourakis M, Patlakas G, Froudarakis ME, Kyrgias G, Skarlatos J, Abatzoglou I, et al. Hypofractionated accelerated radiochemotherapy with cytoprotection (Chemo-HypoARC) for inoperable non-small cell lung carcinoma. Anticancer Res. 2007;27:3625–31.PubMed Koukourakis M, Patlakas G, Froudarakis ME, Kyrgias G, Skarlatos J, Abatzoglou I, et al. Hypofractionated accelerated radiochemotherapy with cytoprotection (Chemo-HypoARC) for inoperable non-small cell lung carcinoma. Anticancer Res. 2007;27:3625–31.PubMed
27.
go back to reference Belderbos J, Uitterhoeve L, van Zandwijk N, Belderbos H, Rodrigus P, Van de Vaart P, et al. Randomised trial of sequential versus concurrent chemo-radiotherapy in patients with inoperable non-small cell lung cancer (EORTC 08972–22973). Eur J Cancer. 2007;43:114–21.CrossRefPubMed Belderbos J, Uitterhoeve L, van Zandwijk N, Belderbos H, Rodrigus P, Van de Vaart P, et al. Randomised trial of sequential versus concurrent chemo-radiotherapy in patients with inoperable non-small cell lung cancer (EORTC 08972–22973). Eur J Cancer. 2007;43:114–21.CrossRefPubMed
28.
go back to reference Alessandra B, Emilio M, Imad Abu R, Eugenio B, Renato T, Giovanni F, et al. Concurrent chemoradiotherapy with tomotherapy in locally advanced non-small cell lung cancer: a phase i, docetaxel dose-escalation study, with hypofractionated radiation regimen. BMC Cancer. 2013;13:513.CrossRef Alessandra B, Emilio M, Imad Abu R, Eugenio B, Renato T, Giovanni F, et al. Concurrent chemoradiotherapy with tomotherapy in locally advanced non-small cell lung cancer: a phase i, docetaxel dose-escalation study, with hypofractionated radiation regimen. BMC Cancer. 2013;13:513.CrossRef
29.
go back to reference Matsuura K, Kimura T, Kashiwado K, Fujita K, Akagi Y, Yuki S, et al. Results of a preliminary study using hypofractionated involved-field radiation therapy and concurrent carboplatin/paclitaxel in the treatment of locally advanced non-small-cell lung cancer. Int J Clin Oncol. 2009;14:408–15.CrossRefPubMed Matsuura K, Kimura T, Kashiwado K, Fujita K, Akagi Y, Yuki S, et al. Results of a preliminary study using hypofractionated involved-field radiation therapy and concurrent carboplatin/paclitaxel in the treatment of locally advanced non-small-cell lung cancer. Int J Clin Oncol. 2009;14:408–15.CrossRefPubMed
30.
go back to reference Dillman RO, Herndon J, Seagren SL, Eaton Jr WL, Green MR. Improved survival in stage III non-small-cell lung cancer: seven year follow-up of cancer and leukemia group B (CALGB) 8433 trial. J Natl Cancer Inst. 1996;88:1210–5.CrossRefPubMed Dillman RO, Herndon J, Seagren SL, Eaton Jr WL, Green MR. Improved survival in stage III non-small-cell lung cancer: seven year follow-up of cancer and leukemia group B (CALGB) 8433 trial. J Natl Cancer Inst. 1996;88:1210–5.CrossRefPubMed
31.
go back to reference Ohri N, Dicker AP, Lawrence YR. Can drugs enhance hypofractionated radiotherapy? A novel method of modeling radiosensitization using in vitro data. Int J Radiat Oncol Biol Phys. 2012;83:385–93.CrossRefPubMed Ohri N, Dicker AP, Lawrence YR. Can drugs enhance hypofractionated radiotherapy? A novel method of modeling radiosensitization using in vitro data. Int J Radiat Oncol Biol Phys. 2012;83:385–93.CrossRefPubMed
32.
go back to reference Lin Q, Liu YE, Ren XC, Wang N, Chen XJ, Wang DY, et al. Dose escalation of accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in unresectable stage III non-small-cell lung cancer: a phase I trial. Radiat Oncol. 2013;8:201.CrossRefPubMedPubMedCentral Lin Q, Liu YE, Ren XC, Wang N, Chen XJ, Wang DY, et al. Dose escalation of accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in unresectable stage III non-small-cell lung cancer: a phase I trial. Radiat Oncol. 2013;8:201.CrossRefPubMedPubMedCentral
33.
go back to reference Zhu ZF, Fan M, Wu KL, Zhao KL, Yang HJ, Chen GY, et al. A phase II trial of accelerated hypofractionated three-dimensional conformal radiation therapy in locally advanced nonsmall cell lung cancer. Radiother Oncol. 2011;98:304–8.CrossRefPubMed Zhu ZF, Fan M, Wu KL, Zhao KL, Yang HJ, Chen GY, et al. A phase II trial of accelerated hypofractionated three-dimensional conformal radiation therapy in locally advanced nonsmall cell lung cancer. Radiother Oncol. 2011;98:304–8.CrossRefPubMed
34.
go back to reference Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.CrossRefPubMed Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.CrossRefPubMed
35.
go back to reference Colevas AD, Setser A, The NCI. Common terminology criteria for adverse events (CTCAE) v 3.0 is the new standard for oncology clinical trials. J Clin Oncol. 2004;22 Suppl 14:6098.CrossRef Colevas AD, Setser A, The NCI. Common terminology criteria for adverse events (CTCAE) v 3.0 is the new standard for oncology clinical trials. J Clin Oncol. 2004;22 Suppl 14:6098.CrossRef
36.
37.
go back to reference Hoffmann AL, Troost EG, Huizenga H, Kaanders JH, Bussink J. Individualized dose prescription for hypofractionation in advanced non-small-cell lung cancer radiotherapy: an in silico trial. Int J Radiat Oncol Biol Phys. 2012;83:1596–602.CrossRefPubMed Hoffmann AL, Troost EG, Huizenga H, Kaanders JH, Bussink J. Individualized dose prescription for hypofractionation in advanced non-small-cell lung cancer radiotherapy: an in silico trial. Int J Radiat Oncol Biol Phys. 2012;83:1596–602.CrossRefPubMed
38.
go back to reference Adkison JB, Khuntia D, Bentzen SM, Cannon GM, Tome WA, Jaradat H, et al. Dose escalated, hypofractionated radiotherapy using helical tomotherapy for inoperable non-small cell lung cancer: preliminary results of a risk-stratified phase I dose escalation study. Technol Cancer Res Treat. 2008;7:441–7.CrossRefPubMedPubMedCentral Adkison JB, Khuntia D, Bentzen SM, Cannon GM, Tome WA, Jaradat H, et al. Dose escalated, hypofractionated radiotherapy using helical tomotherapy for inoperable non-small cell lung cancer: preliminary results of a risk-stratified phase I dose escalation study. Technol Cancer Res Treat. 2008;7:441–7.CrossRefPubMedPubMedCentral
39.
go back to reference Din OS, Harden SV, Hudson E, Mohammed N, Pemberton LS, Lester JF, et al. Accelerated hypo-fractionated radiotherapy for non small cell lung cancer: results from 4 UK centres. Radiother Oncol. 2013;109(1):8–12.CrossRefPubMed Din OS, Harden SV, Hudson E, Mohammed N, Pemberton LS, Lester JF, et al. Accelerated hypo-fractionated radiotherapy for non small cell lung cancer: results from 4 UK centres. Radiother Oncol. 2013;109(1):8–12.CrossRefPubMed
40.
go back to reference Cornelissen R, Senan S, Antonisse IE, Liem H, Tan YK, Rudolphus A, et al. Bronchiolitis obliterans organizing pneumonia (BOOP) after thoracic radiotherapy for breast carcinoma. Radiat Oncol. 2007;2:2.CrossRefPubMedPubMedCentral Cornelissen R, Senan S, Antonisse IE, Liem H, Tan YK, Rudolphus A, et al. Bronchiolitis obliterans organizing pneumonia (BOOP) after thoracic radiotherapy for breast carcinoma. Radiat Oncol. 2007;2:2.CrossRefPubMedPubMedCentral
41.
go back to reference Belderbos J, Heemsbergen W, Hoogeman M, Pengel K, Rossi M, Lebesque J. Acute esophageal toxicity in non-small cell lung cancer patients after high dose conformal radiotherapy. Radiother Oncol. 2005;75:157–64.CrossRefPubMed Belderbos J, Heemsbergen W, Hoogeman M, Pengel K, Rossi M, Lebesque J. Acute esophageal toxicity in non-small cell lung cancer patients after high dose conformal radiotherapy. Radiother Oncol. 2005;75:157–64.CrossRefPubMed
42.
go back to reference Singh AK, Lockett MA, Bradley JD. Predictors of radiation induced esophageal toxicity in patients with non small-cell lung cancer treated with three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2003;55:337–41.CrossRefPubMed Singh AK, Lockett MA, Bradley JD. Predictors of radiation induced esophageal toxicity in patients with non small-cell lung cancer treated with three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2003;55:337–41.CrossRefPubMed
43.
go back to reference Rosenman JG, Halle JS, Socinski MA, Deschesne K, Moore DT, Johnson H, et al. High-dose conformal radiotherapy for treatment of stage IIIA/IIIB non-small-cell lung cancer: technical issues and results of a phase I/II trial. Int J Radiat Oncol Biol Phys. 2002;54:348–56.CrossRefPubMed Rosenman JG, Halle JS, Socinski MA, Deschesne K, Moore DT, Johnson H, et al. High-dose conformal radiotherapy for treatment of stage IIIA/IIIB non-small-cell lung cancer: technical issues and results of a phase I/II trial. Int J Radiat Oncol Biol Phys. 2002;54:348–56.CrossRefPubMed
44.
go back to reference Zhang Z, Xu J, Zhou T, Yi Y, Li H, Sun H, et al. Risk factors of radiation-induced acute esophagitis in non-small cell lung cancer patients treated with concomitant chemoradiotherapy. Radiat Oncol. 2014;9:54.CrossRefPubMedPubMedCentral Zhang Z, Xu J, Zhou T, Yi Y, Li H, Sun H, et al. Risk factors of radiation-induced acute esophagitis in non-small cell lung cancer patients treated with concomitant chemoradiotherapy. Radiat Oncol. 2014;9:54.CrossRefPubMedPubMedCentral
45.
go back to reference Maráz A, Furák J, Varga Z, Fodor E, Együd Z, Borzási E, et al. Acute oesophageal toxicity related to paclitaxel-based concurrent chemoradiotherapy for non-small cell lung cancer. Anticancer Res. 2013;33:1737–41.PubMed Maráz A, Furák J, Varga Z, Fodor E, Együd Z, Borzási E, et al. Acute oesophageal toxicity related to paclitaxel-based concurrent chemoradiotherapy for non-small cell lung cancer. Anticancer Res. 2013;33:1737–41.PubMed
46.
go back to reference Werner-Wasik M, Pequignot E, Leeper D, Hauck W, Curran W. Predictors of severe esophagitis include use of concurrent chemotherapy, but not the length of irradiated esophagus: a multivariate analysis of patients with lung cancer treated with nonoperative therapy. Int J Radiat Oncol Biol Phys. 2000;48:689–96.CrossRefPubMed Werner-Wasik M, Pequignot E, Leeper D, Hauck W, Curran W. Predictors of severe esophagitis include use of concurrent chemotherapy, but not the length of irradiated esophagus: a multivariate analysis of patients with lung cancer treated with nonoperative therapy. Int J Radiat Oncol Biol Phys. 2000;48:689–96.CrossRefPubMed
47.
go back to reference Maguire PD, Sibley GS, Zhou SM, Jamieson TA, Light KL, Antoine PA, et al. Clinical and dosimetric predictors of radiation-induced esophageal toxicity. Int J Radiat Oncol Biol Phys. 1999;45:97–103.CrossRefPubMed Maguire PD, Sibley GS, Zhou SM, Jamieson TA, Light KL, Antoine PA, et al. Clinical and dosimetric predictors of radiation-induced esophageal toxicity. Int J Radiat Oncol Biol Phys. 1999;45:97–103.CrossRefPubMed
48.
go back to reference Cannon DM, Mehta MP, Adkison JB, Khuntia D, Traynor AM, Tomé WA, et al. Dose-limiting toxicity after hypofractionated dose-escalated radiotherapy in non-small-cell lung cancer. J Clin Oncol. 2013;31:4343–8.CrossRefPubMedPubMedCentral Cannon DM, Mehta MP, Adkison JB, Khuntia D, Traynor AM, Tomé WA, et al. Dose-limiting toxicity after hypofractionated dose-escalated radiotherapy in non-small-cell lung cancer. J Clin Oncol. 2013;31:4343–8.CrossRefPubMedPubMedCentral
49.
go back to reference Machtay M, Washam C, Devine P. Pilot study of accelerated radiotherapy with concurrent chemotherapy for stage III non-small cell lung cancer. Semin Oncol. 2005;32 Suppl 3:S9–12.CrossRefPubMed Machtay M, Washam C, Devine P. Pilot study of accelerated radiotherapy with concurrent chemotherapy for stage III non-small cell lung cancer. Semin Oncol. 2005;32 Suppl 3:S9–12.CrossRefPubMed
50.
go back to reference van Baardwijk A, Bosmans G, Boersma L, Wanders S, Dekker A, Dingemans AM, et al. Individualized radical radiotherapy of non-small-cell lung cancer based on normal tissue dose constraints: a feasibility study. Int J Radiat Oncol Biol Phys. 2008;71:1394–401.CrossRefPubMed van Baardwijk A, Bosmans G, Boersma L, Wanders S, Dekker A, Dingemans AM, et al. Individualized radical radiotherapy of non-small-cell lung cancer based on normal tissue dose constraints: a feasibility study. Int J Radiat Oncol Biol Phys. 2008;71:1394–401.CrossRefPubMed
51.
go back to reference van Baardwijk A, Bosmans G, Bentzen SM, Boersma L, Dekker A, Wanders R, et al. Radiation dose prescription for non-small-cell lung cancer according to normal tissue dose constraints: an in silico clinical trial. Int J Radiat Oncol Biol Phys. 2008;71:1103–10.CrossRefPubMed van Baardwijk A, Bosmans G, Bentzen SM, Boersma L, Dekker A, Wanders R, et al. Radiation dose prescription for non-small-cell lung cancer according to normal tissue dose constraints: an in silico clinical trial. Int J Radiat Oncol Biol Phys. 2008;71:1103–10.CrossRefPubMed
52.
go back to reference van Baardwijk A, Wanders S, Boersma L, Borger J, Ollers M, Dingemans AM, et al. Mature results of an individualized radiation dose prescription study based on normal tissue constraints in stages I to III non-small-cell lung cancer. J Clin Oncol. 2010;28:1380–6.CrossRefPubMed van Baardwijk A, Wanders S, Boersma L, Borger J, Ollers M, Dingemans AM, et al. Mature results of an individualized radiation dose prescription study based on normal tissue constraints in stages I to III non-small-cell lung cancer. J Clin Oncol. 2010;28:1380–6.CrossRefPubMed
53.
go back to reference van Meerbeeck JP, Meersschout S, De Pauw R, Madani I, De Neve W. Modern radiotherapy as part of combined modality treatment in locally advanced non-small cell lung cancer: present status and future prospects. Oncologist. 2008;13:700–8.CrossRefPubMed van Meerbeeck JP, Meersschout S, De Pauw R, Madani I, De Neve W. Modern radiotherapy as part of combined modality treatment in locally advanced non-small cell lung cancer: present status and future prospects. Oncologist. 2008;13:700–8.CrossRefPubMed
54.
go back to reference Scrimger RA, Tomé WA, Olivera GH, Reckwerdt PJ, Mehta MP, Fowler JF. Reduction in radiation dose to lung and other normal tissues using helical tomotherapy to treat lung cancer, in comparison to conventional field arrangements. Am J Clin Oncol. 2003;26:70–8.CrossRefPubMed Scrimger RA, Tomé WA, Olivera GH, Reckwerdt PJ, Mehta MP, Fowler JF. Reduction in radiation dose to lung and other normal tissues using helical tomotherapy to treat lung cancer, in comparison to conventional field arrangements. Am J Clin Oncol. 2003;26:70–8.CrossRefPubMed
Metadata
Title
Accelerated hypofractionated three-dimensional conformal radiation therapy (3 Gy/fraction) combined with concurrent chemotherapy for patients with unresectable stage III non-small cell lung cancer: preliminary results of an early terminated phase II trial
Authors
Xiao-Cang Ren
Quan-Yu Wang
Rui Zhang
Xue-Ji Chen
Na Wang
Yue-E Liu
Jie Zong
Zhi-Jun Guo
Dong-Ying Wang
Qiang Lin
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2314-1

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine