Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Study protocol

A randomised phase II trial of Stereotactic Ablative Fractionated radiotherapy versus Radiosurgery for Oligometastatic Neoplasia to the lung (TROG 13.01 SAFRON II)

Authors: Shankar Siva, Tomas Kron, Mathias Bressel, Marion Haas, Tao Mai, Shalini Vinod, Giuseppe Sasso, Wenchang Wong, Hien Le, Thomas Eade, Nicholas Hardcastle, Brent Chesson, Daniel Pham, Morten Høyer, Rebecca Montgomery, David Ball

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Stereotactic ablative body radiotherapy (SABR) is emerging as a non-invasive method for precision irradiation of lung tumours. However, the ideal dose/fractionation schedule is not yet known. The primary purpose of this study is to assess safety and efficacy profile of single and multi-fraction SABR in the context of pulmonary oligometastases.

Methods/Design

The TROG 13.01/ALTG 13.001 clinical trial is a multicentre unblinded randomised phase II study. Eligible patients have up to three metastases to the lung from any non-haematological malignancy, each < 5 cm in size, non-central targets, and have all primary and extrathoracic disease controlled with local therapies. Patients are randomised 1:1 to a single fraction of 28Gy versus 48Gy in four fractions of SABR. The primary objective is to assess the safety of each treatment arm, with secondary objectives including assessment of quality of life, local efficacy, resource use and costs, overall and disease free survival and time to distant failure. Outcomes will be stratified by number of metastases and origin of the primary disease (colorectal versus non-colorectal primary). Planned substudies include an assessment of the impact of online e-Learning platforms for lung SABR and assessment of the effect of SABR fractionation on the immune responses. A total of 84 patients are required to complete the study.

Discussion

Fractionation schedules have not yet been investigated in a randomised fashion in the setting of oligometastatic disease. Assuming the likelihood of similar clinical efficacy in both arms, the present study design allows for exploration of the hypothesis that cost implications of managing potentially increased toxicities from single fraction SABR will be outweighed by costs associated with delivering multiple-fraction SABR.

Trials registration

ACTRN12613001157​763, registered 17th October 2013
Literature
1.
go back to reference Corbin KS, Hellman S, Weichselbaum RR. Extracranial oligometastases: a subset of metastases curable with stereotactic radiotherapy. J Clin Oncol. 2013;31(11):1384–90.CrossRefPubMed Corbin KS, Hellman S, Weichselbaum RR. Extracranial oligometastases: a subset of metastases curable with stereotactic radiotherapy. J Clin Oncol. 2013;31(11):1384–90.CrossRefPubMed
2.
go back to reference Tree AC, Khoo VS, Eeles RA, Ahmed M, Dearnaley DP, Hawkins MA, et al. Stereotactic body radiotherapy for oligometastases. Lancet Oncol. 2013;14(1):e28–37.CrossRefPubMed Tree AC, Khoo VS, Eeles RA, Ahmed M, Dearnaley DP, Hawkins MA, et al. Stereotactic body radiotherapy for oligometastases. Lancet Oncol. 2013;14(1):e28–37.CrossRefPubMed
3.
go back to reference Song A, Shiue K, Machtay M, Yao M, Ellis RJ, Huang Z, et al. Stereotactic body radiation therapy for metastasis in the lung: an undervalued treatment option with future prospects. Lung Cancer Manag. 2012;1(1):73–9.CrossRef Song A, Shiue K, Machtay M, Yao M, Ellis RJ, Huang Z, et al. Stereotactic body radiation therapy for metastasis in the lung: an undervalued treatment option with future prospects. Lung Cancer Manag. 2012;1(1):73–9.CrossRef
4.
go back to reference Siva S, MacManus M, Ball D. Stereotactic radiotherapy for pulmonary oligometastases: a systematic review. J Thorac Oncol. 2010;5(7):1091–9.CrossRefPubMed Siva S, MacManus M, Ball D. Stereotactic radiotherapy for pulmonary oligometastases: a systematic review. J Thorac Oncol. 2010;5(7):1091–9.CrossRefPubMed
5.
6.
go back to reference Wulf J, Baier K, Mueller G, Flentje MP. Dose–response in stereotactic irradiation of lung tumors. Radiother Oncol. 2005;77(1):83–7.CrossRefPubMed Wulf J, Baier K, Mueller G, Flentje MP. Dose–response in stereotactic irradiation of lung tumors. Radiother Oncol. 2005;77(1):83–7.CrossRefPubMed
7.
go back to reference Fritz P, Kraus H-J, Muhlnickel W, Hammer U, Dolken W, Engel-Riedel W, et al. Stereotactic, single-dose irradiation of stage I non-small cell lung cancer and lung metastases. Radiat Oncol. 2006;1(30):717X–1. Fritz P, Kraus H-J, Muhlnickel W, Hammer U, Dolken W, Engel-Riedel W, et al. Stereotactic, single-dose irradiation of stage I non-small cell lung cancer and lung metastases. Radiat Oncol. 2006;1(30):717X–1.
8.
go back to reference Hof H, Hoess A, Oetzel D, Debus J, Herfarth K. Stereotactic single-dose radiotherapy of lung metastases. Strahlenther Onkol. 2007;183(12):673–8.CrossRefPubMed Hof H, Hoess A, Oetzel D, Debus J, Herfarth K. Stereotactic single-dose radiotherapy of lung metastases. Strahlenther Onkol. 2007;183(12):673–8.CrossRefPubMed
9.
go back to reference Lax I, Blomgren H, Larson D, Näslund I. Extracranial stereotactic radiosurgery of localized targets. J Radiosurg. 1998;1(2):135–48.CrossRef Lax I, Blomgren H, Larson D, Näslund I. Extracranial stereotactic radiosurgery of localized targets. J Radiosurg. 1998;1(2):135–48.CrossRef
10.
go back to reference Guckenberger M, Wulf J, Mueller G, Krieger T, Baier K, Gabor M, et al. Dose–response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation. Int J Radiat Oncol Biol Phys. 2009;74(1):47–54.CrossRefPubMed Guckenberger M, Wulf J, Mueller G, Krieger T, Baier K, Gabor M, et al. Dose–response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation. Int J Radiat Oncol Biol Phys. 2009;74(1):47–54.CrossRefPubMed
11.
go back to reference Siva S, Chesson B, Aarons Y, Clements N, Kron T, MacManus M, et al. Implementation of a lung radiosurgery program: technical considerations and quality assurance in an Australian institution. J Med Imaging Radiat Oncol. 2012;56(3):354–61.CrossRefPubMed Siva S, Chesson B, Aarons Y, Clements N, Kron T, MacManus M, et al. Implementation of a lung radiosurgery program: technical considerations and quality assurance in an Australian institution. J Med Imaging Radiat Oncol. 2012;56(3):354–61.CrossRefPubMed
12.
go back to reference Siva S, Kirby K, Caine H, Pham D, Kron T, Te Marvelde L, et al. Comparison of Single-fraction and Multi-fraction Stereotactic Radiotherapy for Patients with F-fluorodeoxyglucose Positron Emission Tomography-staged Pulmonary Oligometastases. Clin Oncol (R Coll Radiol). 2015;27(6):353–61.CrossRef Siva S, Kirby K, Caine H, Pham D, Kron T, Te Marvelde L, et al. Comparison of Single-fraction and Multi-fraction Stereotactic Radiotherapy for Patients with F-fluorodeoxyglucose Positron Emission Tomography-staged Pulmonary Oligometastases. Clin Oncol (R Coll Radiol). 2015;27(6):353–61.CrossRef
13.
go back to reference Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62(740):679–94.CrossRefPubMed Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62(740):679–94.CrossRefPubMed
14.
go back to reference Onishi H, Araki T, Shirato H, Nagata Y, Hiraoka M, Gomi K, et al. Stereotactic hypofractionated high‐dose irradiation for stage I nonsmall cell lung carcinoma. Cancer. 2004;101(7):1623–31.CrossRefPubMed Onishi H, Araki T, Shirato H, Nagata Y, Hiraoka M, Gomi K, et al. Stereotactic hypofractionated high‐dose irradiation for stage I nonsmall cell lung carcinoma. Cancer. 2004;101(7):1623–31.CrossRefPubMed
15.
go back to reference Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5 L). Qual Life Res. 2011;20(10):1727–36.CrossRefPubMedPubMedCentral Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5 L). Qual Life Res. 2011;20(10):1727–36.CrossRefPubMedPubMedCentral
16.
17.
go back to reference Valentini V, Dinapoli N, Nori S, Mattiucci GC, Mantello G, Marucci L, et al. An application of visible human database in radiotherapy: tutorial for image guided external radiotherapy (TIGER). Radiother Oncol. 2004;70(2):165–9. Epub 2004/03/19. eng.CrossRefPubMed Valentini V, Dinapoli N, Nori S, Mattiucci GC, Mantello G, Marucci L, et al. An application of visible human database in radiotherapy: tutorial for image guided external radiotherapy (TIGER). Radiother Oncol. 2004;70(2):165–9. Epub 2004/03/19. eng.CrossRefPubMed
18.
go back to reference Alfieri J, Portelance L, Souhami L, Steinert Y, McLeod P, Gallant F, et al. Development and impact evaluation of an e-learning radiation oncology module. Int J Radiat Oncol Biol Phys. 2012;82(3):e573–80. Epub 2011/10/26. eng.CrossRefPubMed Alfieri J, Portelance L, Souhami L, Steinert Y, McLeod P, Gallant F, et al. Development and impact evaluation of an e-learning radiation oncology module. Int J Radiat Oncol Biol Phys. 2012;82(3):e573–80. Epub 2011/10/26. eng.CrossRefPubMed
19.
go back to reference Bovko S, Brennan B, Silence-Ariemma M. Designing medical curriculum for delivery in an E-Learning environment. Radiat Oncol. 2005;76 Suppl 2:S229.CrossRef Bovko S, Brennan B, Silence-Ariemma M. Designing medical curriculum for delivery in an E-Learning environment. Radiat Oncol. 2005;76 Suppl 2:S229.CrossRef
20.
go back to reference Foroudi F, Pham D, Bressel M, Tongs D, Rolfo A, Styles C, et al. The utility of e-Learning to support training for a multicentre bladder online adaptive radiotherapy trial (TROG 10.01-BOLART). Radiother Oncol. 2013;109(1):165–9.CrossRefPubMed Foroudi F, Pham D, Bressel M, Tongs D, Rolfo A, Styles C, et al. The utility of e-Learning to support training for a multicentre bladder online adaptive radiotherapy trial (TROG 10.01-BOLART). Radiother Oncol. 2013;109(1):165–9.CrossRefPubMed
21.
go back to reference Siva S, MacManus MP, Martin RF, Martin OA. Abscopal effects of radiation therapy: A clinical review for the radiobiologist. Cancer Lett. 2015;356(1):82–90.CrossRefPubMed Siva S, MacManus MP, Martin RF, Martin OA. Abscopal effects of radiation therapy: A clinical review for the radiobiologist. Cancer Lett. 2015;356(1):82–90.CrossRefPubMed
22.
go back to reference Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev. 2015. Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev. 2015.
23.
24.
go back to reference Matzinger P. The danger model: a renewed sense of self. Sci Signal. 2002;296(5566):301. Matzinger P. The danger model: a renewed sense of self. Sci Signal. 2002;296(5566):301.
25.
go back to reference Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9.CrossRefPubMed Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9.CrossRefPubMed
26.
go back to reference Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW. External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res. 2004;64(12):4328–37.CrossRefPubMed Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW. External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res. 2004;64(12):4328–37.CrossRefPubMed
27.
go back to reference Palma D, Visser O, Lagerwaard FJ, Belderbos J, Slotman BJ, Senan S. Impact of introducing stereotactic lung radiotherapy for elderly patients with stage I non–small-cell lung cancer: A population-based time-trend analysis. J Clin Oncol. 2010;28(35):5153–9.CrossRefPubMed Palma D, Visser O, Lagerwaard FJ, Belderbos J, Slotman BJ, Senan S. Impact of introducing stereotactic lung radiotherapy for elderly patients with stage I non–small-cell lung cancer: A population-based time-trend analysis. J Clin Oncol. 2010;28(35):5153–9.CrossRefPubMed
28.
go back to reference Verstegen N, Oosterhuis J, Palma D, Rodrigues G, Lagerwaard F, van der Elst A, et al. Stage I–II non-small-cell lung cancer treated using either stereotactic ablative radiotherapy (SABR) or lobectomy by video-assisted thoracoscopic surgery (VATS): outcomes of a propensity score-matched analysis. Annals Oncol. 2013;24(6):1543-48 Verstegen N, Oosterhuis J, Palma D, Rodrigues G, Lagerwaard F, van der Elst A, et al. Stage I–II non-small-cell lung cancer treated using either stereotactic ablative radiotherapy (SABR) or lobectomy by video-assisted thoracoscopic surgery (VATS): outcomes of a propensity score-matched analysis. Annals Oncol. 2013;24(6):1543-48
29.
go back to reference Chang JY, Senan S, Paul MA, Mehran RJ, Louie AV, Balter P, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol. 2015;16(6):630–7.CrossRefPubMed Chang JY, Senan S, Paul MA, Mehran RJ, Louie AV, Balter P, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol. 2015;16(6):630–7.CrossRefPubMed
30.
go back to reference Videtic GMM, Hu C, Singh AK, Chang JY, Parker W, Olivier KR et al. NRG Oncology RTOG 0915 (NCCTG N0927): A Randomized Phase II Study Comparing 2 Stereotactic Body Radiation Therapy (SBRT) Schedules for Medically Inoperable Patients with Stage I Peripheral Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Physics. 2015;93(4):757-64. Videtic GMM, Hu C, Singh AK, Chang JY, Parker W, Olivier KR et al. NRG Oncology RTOG 0915 (NCCTG N0927): A Randomized Phase II Study Comparing 2 Stereotactic Body Radiation Therapy (SBRT) Schedules for Medically Inoperable Patients with Stage I Peripheral Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Physics. 2015;93(4):757-64.
31.
go back to reference Ries LAG, Reichman ME, Lewis DR, Hankey BF, Edwards BK. Cancer survival and incidence from the Surveillance, Epidemiology, and End Results (SEER) program. Oncologist. 2003;8(6):541–52.CrossRef Ries LAG, Reichman ME, Lewis DR, Hankey BF, Edwards BK. Cancer survival and incidence from the Surveillance, Epidemiology, and End Results (SEER) program. Oncologist. 2003;8(6):541–52.CrossRef
32.
go back to reference Patchell RA, Tibbs PA, Regine WF, Dempsey RJ, Mohiuddin M, Kryscio RJ, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA. 1998;280(17):1485–9.CrossRefPubMed Patchell RA, Tibbs PA, Regine WF, Dempsey RJ, Mohiuddin M, Kryscio RJ, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA. 1998;280(17):1485–9.CrossRefPubMed
33.
go back to reference Simmonds P, Primrose J, Colquitt J, Garden O, Poston G, Rees M. Surgical resection of hepatic metastases from colorectal cancer: a systematic review of published studies. Br J Cancer. 2006;94(7):982–99.CrossRefPubMedPubMedCentral Simmonds P, Primrose J, Colquitt J, Garden O, Poston G, Rees M. Surgical resection of hepatic metastases from colorectal cancer: a systematic review of published studies. Br J Cancer. 2006;94(7):982–99.CrossRefPubMedPubMedCentral
35.
go back to reference Pastorino U, Buyse M, Friedel G, Ginsberg RJ, Girard P, Goldstraw P, et al. Long-term results of lung metastasectomy: prognostic analyses based on 5206 cases. J Thorac Cardiovasc Surg. 1997;113(1):37–49.CrossRefPubMed Pastorino U, Buyse M, Friedel G, Ginsberg RJ, Girard P, Goldstraw P, et al. Long-term results of lung metastasectomy: prognostic analyses based on 5206 cases. J Thorac Cardiovasc Surg. 1997;113(1):37–49.CrossRefPubMed
36.
go back to reference Murray E, Charles C, Gafni A. Shared decision-making in primary care: tailoring the Charles et al. model to fit the context of general practice. Patient Educ Couns. 2006;62(2):205–11.CrossRefPubMed Murray E, Charles C, Gafni A. Shared decision-making in primary care: tailoring the Charles et al. model to fit the context of general practice. Patient Educ Couns. 2006;62(2):205–11.CrossRefPubMed
37.
go back to reference Kalso E, Perttunen K, Kaasinen S. Pain after thoracic surgery. Acta Anaesthesiol Scand. 1992;36(1):96–100.CrossRefPubMed Kalso E, Perttunen K, Kaasinen S. Pain after thoracic surgery. Acta Anaesthesiol Scand. 1992;36(1):96–100.CrossRefPubMed
38.
39.
go back to reference Schaue D, Ratikan JA, Iwamoto KS, McBride WH. Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys. 2012;83(4):1306-10. Schaue D, Ratikan JA, Iwamoto KS, McBride WH. Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys. 2012;83(4):1306-10.
40.
go back to reference Finkelstein SE, Timmerman R, McBride WH, Schaue D, Hoffe SE, Mantz CA, et al. The confluence of stereotactic ablative radiotherapy and tumor immunology. Clin Dev Immunol. 2011;2011. Finkelstein SE, Timmerman R, McBride WH, Schaue D, Hoffe SE, Mantz CA, et al. The confluence of stereotactic ablative radiotherapy and tumor immunology. Clin Dev Immunol. 2011;2011.
41.
go back to reference Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res. 2012;177(3):311–27. Epub 2012/01/11. eng.CrossRefPubMed Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res. 2012;177(3):311–27. Epub 2012/01/11. eng.CrossRefPubMed
42.
go back to reference Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell. 2005;8(2):89–91.CrossRefPubMed Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell. 2005;8(2):89–91.CrossRefPubMed
43.
go back to reference Hellevik T, Martinez-Zubiaurre I. Radiotherapy and the Tumor Stroma: The Importance of Dose and Fractionation. Frontiers Oncol. 2014;4:1. Hellevik T, Martinez-Zubiaurre I. Radiotherapy and the Tumor Stroma: The Importance of Dose and Fractionation. Frontiers Oncol. 2014;4:1.
44.
go back to reference Siva S, Callahan J, MacManus MP, Martin O, Hicks RJ, Ball DL. Abscopal Effects after Conventional and Stereotactic Lung Irradiation of Non–Small-Cell Lung Cancer. J Thoracic Oncol. 2013;8(8):e71-e72. Siva S, Callahan J, MacManus MP, Martin O, Hicks RJ, Ball DL. Abscopal Effects after Conventional and Stereotactic Lung Irradiation of Non–Small-Cell Lung Cancer. J Thoracic Oncol. 2013;8(8):e71-e72.
46.
go back to reference Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 2005;174(12):7516–23.CrossRefPubMed Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 2005;174(12):7516–23.CrossRefPubMed
47.
go back to reference Verbrugge I, Hagekyriakou J, Sharp LL, Galli M, West A, McLaughlin NM, et al. Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res. 2012;72(13):3163–74. Epub 2012/05/10. eng.CrossRefPubMed Verbrugge I, Hagekyriakou J, Sharp LL, Galli M, West A, McLaughlin NM, et al. Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res. 2012;72(13):3163–74. Epub 2012/05/10. eng.CrossRefPubMed
48.
go back to reference Filatenkov A, Baker J, Mueller AM, Kenkel JA, Ahn GO, Dutt S, Shizuru JA. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res. 2015;21(16):3727-39. 2824.014. Filatenkov A, Baker J, Mueller AM, Kenkel JA, Ahn GO, Dutt S, Shizuru JA. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res. 2015;21(16):3727-39. 2824.014.
49.
go back to reference Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, et al. Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124(2):0.CrossRef Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, et al. Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124(2):0.CrossRef
50.
go back to reference Sharabi A, Nirschl C, Ceccato T, Francica B, Alme A, Nirschl T, et al. Antigen-specific immune responses in melanoma using stereotactic radiotherapy combined with anti-PD1 checkpoint blockade. Cancer Res. 2014;74(19 Supplement):635.CrossRef Sharabi A, Nirschl C, Ceccato T, Francica B, Alme A, Nirschl T, et al. Antigen-specific immune responses in melanoma using stereotactic radiotherapy combined with anti-PD1 checkpoint blockade. Cancer Res. 2014;74(19 Supplement):635.CrossRef
51.
go back to reference Park SS, Dong H, Liu X, Harrington SM, Krco CJ, Grams M, Mansfield SA, Furutani KM, Olivier KR, Kwon ED. PD-1 restrains radiotherapy-induced abscopal Effect. Cancer Immunol Res. 2015;6:610-9. Park SS, Dong H, Liu X, Harrington SM, Krco CJ, Grams M, Mansfield SA, Furutani KM, Olivier KR, Kwon ED. PD-1 restrains radiotherapy-induced abscopal Effect. Cancer Immunol Res. 2015;6:610-9.
52.
go back to reference Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti–CTLA-4 antibody. Clin Cancer Res. 2009;15(17):5379–88.CrossRefPubMedPubMedCentral Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti–CTLA-4 antibody. Clin Cancer Res. 2009;15(17):5379–88.CrossRefPubMedPubMedCentral
53.
go back to reference Pilones KA, Vanpouille-Box C, Demaria S. Combination of Radiotherapy and Immune Checkpoint Inhibitors. Semin Radiat Oncol. 2015;25(1):28–33.CrossRefPubMed Pilones KA, Vanpouille-Box C, Demaria S. Combination of Radiotherapy and Immune Checkpoint Inhibitors. Semin Radiat Oncol. 2015;25(1):28–33.CrossRefPubMed
Metadata
Title
A randomised phase II trial of Stereotactic Ablative Fractionated radiotherapy versus Radiosurgery for Oligometastatic Neoplasia to the lung (TROG 13.01 SAFRON II)
Authors
Shankar Siva
Tomas Kron
Mathias Bressel
Marion Haas
Tao Mai
Shalini Vinod
Giuseppe Sasso
Wenchang Wong
Hien Le
Thomas Eade
Nicholas Hardcastle
Brent Chesson
Daniel Pham
Morten Høyer
Rebecca Montgomery
David Ball
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2227-z

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine