Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

Patterns of failure after use of 18F-FDG PET/CT in integration of extended-field chemo-IMRT and 3D-brachytherapy plannings for advanced cervical cancers with extensive lymph node metastases

Authors: Yih-Lin Chung, Cheng-Fang Horng, Pei-Ing Lee, Fong-Lin Chen

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

The study is to evaluate the patterns of failure, toxicities and long-term outcomes of aggressive treatment using 18F-FDG PET/CT-guided chemoradiation plannings for advanced cervical cancer with extensive nodal extent that has been regarded as a systemic disease.

Methods

We retrospectively reviewed 72 consecutive patients with 18F-FDG PET/CT-detected widespread pelvic, para-aortic and/or supraclavicular lymph nodes treated with curative-intent PET-guided cisplatin-based extended-field dose-escalating intensity-modulated radiotherapy (IMRT) and adaptive high-dose-rate intracavitary 3D-brachytherapy between 2002 and 2010. The failure sites were specifically localized by comparing recurrences on fusion of post-therapy recurrent 18F-FDG PET/CT scans to the initial PET-guided radiation plannings for IMRT and brachytherapy.

Results

The median follow-up time for the 72 patients was 66 months (range, 3–142 months). The 5-year disease-free survival rate calculated by the Kaplan-Meier method for the patients with extensive N1 disease with the uppermost PET-positive pelvic-only nodes (26 patients), and the patients with M1 disease with the uppermost PET-positive para-aortic (31 patients) or supraclavicular (15 patients) nodes was 78.5 %, and 41.8–50 %, respectively (N1 vs. M1, p = 0.0465). Eight (11.1 %), 18 (25.0 %), and 3 (4.2 %) of the patients developed in-field recurrence, out-of-field and/or distant metastasis, and combined failure, respectively. The 6 (8.3 %) local failures around the uterine cervix were all at the junction between IMRT and brachytherapy in the parametrium. The rate of late grade 3/4 bladder and bowel toxicities was 4.2 and 9.7 %, respectively. When compared to conventional pelvic chemoradiation/2D-brachytherapy during 1990–2001, the adoption of 18F-FDG PET-guided extended-field dose-escalating chemoradiation plannings in IMRT and 3D-brachytherapy after 2002 appeared to provide higher disease-free and overall survival rates with acceptable toxicities in advanced cervical cancer patients.

Conclusions

For AJCC stage M1 cervical cancer with supraclavicular lymph node metastases, curability can be achieved in the era of PET and chemo-IMRT. However, the main pattern of failure is still out-of-field and/or distant metastasis. In addition to improving systemic treatment, how to optimize and integrate the junctional doses between IMRT and 3D-brachytherapy in PET-guided plannings to further decrease local recurrence warrants investigation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Grigsby PW, Siegel BA, Dehdashti F. Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. J Clin Oncol. 2001;19:3745–9.PubMed Grigsby PW, Siegel BA, Dehdashti F. Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. J Clin Oncol. 2001;19:3745–9.PubMed
2.
go back to reference Kidd EA, Siegel BA, Dehdashti F, Rader JS, Mutch DG, Powell MA, et al. Lymph node staging by positron emission tomography in cervical cancer: relationship to prognosis. J Clin Oncol. 2010;28:2108–13.CrossRefPubMed Kidd EA, Siegel BA, Dehdashti F, Rader JS, Mutch DG, Powell MA, et al. Lymph node staging by positron emission tomography in cervical cancer: relationship to prognosis. J Clin Oncol. 2010;28:2108–13.CrossRefPubMed
3.
go back to reference Undurraga M, Loubeyre P, Dubuisson JB, Schneider D, Petignat P. Early-stage cervical cancer: is surgery better than radiotherapy? Expert Rev Anticancer Ther. 2010;10:451–60.CrossRefPubMed Undurraga M, Loubeyre P, Dubuisson JB, Schneider D, Petignat P. Early-stage cervical cancer: is surgery better than radiotherapy? Expert Rev Anticancer Ther. 2010;10:451–60.CrossRefPubMed
5.
go back to reference Loiselle C, Koh WJ. The emerging use of IMRT for treatment of cervical cancer. J Natl Compr Canc Netw. 2010;8:1425–34.PubMed Loiselle C, Koh WJ. The emerging use of IMRT for treatment of cervical cancer. J Natl Compr Canc Netw. 2010;8:1425–34.PubMed
6.
go back to reference Salama JK, Roeske JC, Mehta N, Mundt AJ. Intensity-modulated radiation therapy in gynecologic malignancies. Curr Treat Options Oncol. 2004;5:97–108.CrossRefPubMed Salama JK, Roeske JC, Mehta N, Mundt AJ. Intensity-modulated radiation therapy in gynecologic malignancies. Curr Treat Options Oncol. 2004;5:97–108.CrossRefPubMed
7.
go back to reference Klopp AH, Moughan J, Portelance L, Miller BE, Salehpour MR, Hildebrandt E, et al. Hematologic toxicity in RTOG 0418: a phase 2 study of postoperative IMRT for gynecologic cancer. Int J Radiat Oncol Biol Phys. 2013;86:83–90.CrossRefPubMedPubMedCentral Klopp AH, Moughan J, Portelance L, Miller BE, Salehpour MR, Hildebrandt E, et al. Hematologic toxicity in RTOG 0418: a phase 2 study of postoperative IMRT for gynecologic cancer. Int J Radiat Oncol Biol Phys. 2013;86:83–90.CrossRefPubMedPubMedCentral
8.
go back to reference Ahmed RS, Kim RY, Duan J, Meleth S, De Los Santos JF, Fiveash JB. IMRT dose escalation for positive para-aortic lymph nodes in patients with locally advanced cervical cancer while reducing dose to bone marrow and other organs at risk. Int J Radiat Oncol Biol Phys. 2004;60:505–12.CrossRefPubMed Ahmed RS, Kim RY, Duan J, Meleth S, De Los Santos JF, Fiveash JB. IMRT dose escalation for positive para-aortic lymph nodes in patients with locally advanced cervical cancer while reducing dose to bone marrow and other organs at risk. Int J Radiat Oncol Biol Phys. 2004;60:505–12.CrossRefPubMed
9.
go back to reference Esthappan J, Chaudhari S, Santanam L, Mutic S, Olsen J, Macdonald DM, et al. Prospective clinical trial of positron emission tomography/computed tomography image-guided intensity-modulated radiation therapy for cervical carcinoma with positive para-aortic lymph nodes. Int J Radiat Oncol Biol Phys. 2008;72:1134–9.CrossRefPubMed Esthappan J, Chaudhari S, Santanam L, Mutic S, Olsen J, Macdonald DM, et al. Prospective clinical trial of positron emission tomography/computed tomography image-guided intensity-modulated radiation therapy for cervical carcinoma with positive para-aortic lymph nodes. Int J Radiat Oncol Biol Phys. 2008;72:1134–9.CrossRefPubMed
10.
go back to reference Dinan MA, Curtis LH, Carpenter WR, Biddle AK, Abernethy AP, Patz Jr EF, et al. Stage migration, selection bias, and survival associated with the adoption of positron emission tomography among medicare beneficiaries with non-small-cell lung cancer, 1998–2003. J Clin Oncol. 2012;30:2725–30.CrossRefPubMed Dinan MA, Curtis LH, Carpenter WR, Biddle AK, Abernethy AP, Patz Jr EF, et al. Stage migration, selection bias, and survival associated with the adoption of positron emission tomography among medicare beneficiaries with non-small-cell lung cancer, 1998–2003. J Clin Oncol. 2012;30:2725–30.CrossRefPubMed
11.
go back to reference Haie-Meder C, Pötter R, Van Limbergen E, Briot E, De Brabandere M, Dimopoulos J, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): Concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74:235–45.CrossRefPubMed Haie-Meder C, Pötter R, Van Limbergen E, Briot E, De Brabandere M, Dimopoulos J, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): Concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74:235–45.CrossRefPubMed
12.
go back to reference Pötter R, Haie-Meder C, Van Limbergen E, Barillot I, De Brabandere M, Dimopoulos J, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78:67–77.CrossRefPubMed Pötter R, Haie-Meder C, Van Limbergen E, Barillot I, De Brabandere M, Dimopoulos J, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78:67–77.CrossRefPubMed
13.
go back to reference Thomas GM. Improved treatment for cervical cancer—concurrent chemotherapy and radiotherapy. N Engl J Med. 1999;340:1198–200.CrossRefPubMed Thomas GM. Improved treatment for cervical cancer—concurrent chemotherapy and radiotherapy. N Engl J Med. 1999;340:1198–200.CrossRefPubMed
14.
go back to reference Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman MA, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999;340:1144–53.CrossRefPubMed Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman MA, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999;340:1144–53.CrossRefPubMed
15.
go back to reference Morris M, Eifel PJ, Lu J, Grigsby PW, Levenback C, Stevens RE, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med. 1999;340:1137–43.CrossRefPubMed Morris M, Eifel PJ, Lu J, Grigsby PW, Levenback C, Stevens RE, et al. Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med. 1999;340:1137–43.CrossRefPubMed
16.
go back to reference Vargo JA, Kim H, Choi S, Sukumvanich P, Olawaiye AB, Kelley JL, et al. Extended field intensity modulated radiation therapy with concomitant boost for lymph node-positive cervical cancer: analysis of regional control and recurrence patterns in the positron emission tomography/computed tomography era. Int J Radiat Oncol Biol Phys. 2014;90:1091–8.CrossRefPubMed Vargo JA, Kim H, Choi S, Sukumvanich P, Olawaiye AB, Kelley JL, et al. Extended field intensity modulated radiation therapy with concomitant boost for lymph node-positive cervical cancer: analysis of regional control and recurrence patterns in the positron emission tomography/computed tomography era. Int J Radiat Oncol Biol Phys. 2014;90:1091–8.CrossRefPubMed
17.
go back to reference Liang JA, Chen SW, Hung YC, Yeh LS, Chang WC, Lin WC, et al. Low-dose, prophylactic, extended-field, intensity-modulated radiotherapy plus concurrent weekly cisplatin for patients with stage IB2-IIIB cervical cancer, positive pelvic lymph nodes, and negative para-aortic lymph nodes. Int J Gynecol Cancer. 2014;24:901–7.CrossRefPubMed Liang JA, Chen SW, Hung YC, Yeh LS, Chang WC, Lin WC, et al. Low-dose, prophylactic, extended-field, intensity-modulated radiotherapy plus concurrent weekly cisplatin for patients with stage IB2-IIIB cervical cancer, positive pelvic lymph nodes, and negative para-aortic lymph nodes. Int J Gynecol Cancer. 2014;24:901–7.CrossRefPubMed
18.
go back to reference Kidd EA, Siegel BA, Dehdashti F, Rader JS, Mutic S, Mutch DG, et al. Clinical outcomes of definitive intensity-modulated radiation therapy with fluorodeoxyglucose-positron emission tomography simulation in patients with locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2010;77:1085–91.CrossRefPubMed Kidd EA, Siegel BA, Dehdashti F, Rader JS, Mutic S, Mutch DG, et al. Clinical outcomes of definitive intensity-modulated radiation therapy with fluorodeoxyglucose-positron emission tomography simulation in patients with locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2010;77:1085–91.CrossRefPubMed
19.
go back to reference Lesnock JL, Farris C, Beriwal S, Krivak TC. Upfront treatment of locally advanced cervical cancer with intensity modulated radiation therapy compared to four-field radiation therapy: a cost-effectiveness analysis. Gynecol Oncol. 2013;129:574–9.CrossRefPubMed Lesnock JL, Farris C, Beriwal S, Krivak TC. Upfront treatment of locally advanced cervical cancer with intensity modulated radiation therapy compared to four-field radiation therapy: a cost-effectiveness analysis. Gynecol Oncol. 2013;129:574–9.CrossRefPubMed
20.
go back to reference Tanderup K, Georg D, Pötter R, Kirisits C, Grau C, Lindegaard JC. Adaptive management of cervical cancer radiotherapy. Semin Radiat Oncol. 2010;20:121–9.CrossRefPubMed Tanderup K, Georg D, Pötter R, Kirisits C, Grau C, Lindegaard JC. Adaptive management of cervical cancer radiotherapy. Semin Radiat Oncol. 2010;20:121–9.CrossRefPubMed
21.
go back to reference Salem A, Salem AF, Al-Ibraheem A, Lataifeh I, Almousa A, Jaradat I. Evidence for the use PET for radiation therapy planning in patients with cervical cancer: a systematic review. Hematol Oncol Stem Cell Ther. 2011;4:173–81.CrossRefPubMed Salem A, Salem AF, Al-Ibraheem A, Lataifeh I, Almousa A, Jaradat I. Evidence for the use PET for radiation therapy planning in patients with cervical cancer: a systematic review. Hematol Oncol Stem Cell Ther. 2011;4:173–81.CrossRefPubMed
22.
go back to reference Quinn MA, Benedet JL, Odicino F, Maisonneuve P, Beller U, Creasman WT, et al. Carcinoma of the cervix uteri. FIGO 26th annual report on the results of treatment in gynecological cancer. Int J Gynaecol Obstet. 2006;Suppl 1:S43–S103.CrossRef Quinn MA, Benedet JL, Odicino F, Maisonneuve P, Beller U, Creasman WT, et al. Carcinoma of the cervix uteri. FIGO 26th annual report on the results of treatment in gynecological cancer. Int J Gynaecol Obstet. 2006;Suppl 1:S43–S103.CrossRef
23.
go back to reference Tran BN, Grigsby PW, Dehdashti F, Herzog TJ, Siegel BA. Occult supraclavicular lymph node metastasis identified by FDG-PET in patients with carcinoma of the uterine cervix. Gynecol Oncol. 2003;90:572–6.CrossRefPubMed Tran BN, Grigsby PW, Dehdashti F, Herzog TJ, Siegel BA. Occult supraclavicular lymph node metastasis identified by FDG-PET in patients with carcinoma of the uterine cervix. Gynecol Oncol. 2003;90:572–6.CrossRefPubMed
24.
go back to reference Feinstein AR, Sosin DM, Wells CK. The will Rogers phenomenon. Stage migration and new diagnostic techniques as a source of misleading statistics for survival in cancer. N Engl J Med. 1985;312:1604–8.CrossRefPubMed Feinstein AR, Sosin DM, Wells CK. The will Rogers phenomenon. Stage migration and new diagnostic techniques as a source of misleading statistics for survival in cancer. N Engl J Med. 1985;312:1604–8.CrossRefPubMed
25.
go back to reference Wright AA, Howitt BE, Myers AP, Dahlberg SE, Palescandolo E, Van Hummelen P, et al. Oncogenic mutations in cervical cancer: genomic differences between adenocarcinomas and squamous cell carcinomas of the cervix. Cancer. 2013;119:3776–83.CrossRefPubMedPubMedCentral Wright AA, Howitt BE, Myers AP, Dahlberg SE, Palescandolo E, Van Hummelen P, et al. Oncogenic mutations in cervical cancer: genomic differences between adenocarcinomas and squamous cell carcinomas of the cervix. Cancer. 2013;119:3776–83.CrossRefPubMedPubMedCentral
26.
go back to reference Stevanović S, Draper LM, Langhan MM, Campbell TE, Kwong ML, Wunderlich JR, et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol. 2015;33:1543–50.CrossRefPubMed Stevanović S, Draper LM, Langhan MM, Campbell TE, Kwong ML, Wunderlich JR, et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol. 2015;33:1543–50.CrossRefPubMed
Metadata
Title
Patterns of failure after use of 18F-FDG PET/CT in integration of extended-field chemo-IMRT and 3D-brachytherapy plannings for advanced cervical cancers with extensive lymph node metastases
Authors
Yih-Lin Chung
Cheng-Fang Horng
Pei-Ing Lee
Fong-Lin Chen
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2226-0

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine