Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

The anti-oxidative transcription factor Nuclear factor E2 related factor-2 (Nrf2) counteracts TGF-β1 mediated growth inhibition of pancreatic ductal epithelial cells -Nrf2 as determinant of pro-tumorigenic functions of TGF-β1

Authors: Geeske Genrich, Marcus Kruppa, Lennart Lenk, Ole Helm, Anna Broich, Sandra Freitag-Wolf, Christoph Röcken, Bence Sipos, Heiner Schäfer, Susanne Sebens

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Nuclear factor E2 related factor-2 (Nrf2) is an oxidative stress inducible transcription factor being essential in regulating cell homeostasis. Thus, acute induction of Nrf2 in epithelial cells exposed to inflammation confers protection from oxidative cell damage and mutagenesis supporting an anti-tumorigenic role for Nrf2. However, pancreatic ductal adenocarcinoma (PDAC) is characterized by persistent Nrf2 activity conferring therapy resistance which points to a pro-tumorigenic role of Nrf2. A similar dichotomous role in tumorigenesis is described for the Transforming Growth Factor-beta 1 (TGF-β1). The present study therefore aimed at elucidating whether the switch of Nrf2 function towards a tumor promoting one relates to the modulation of TGF-β1 induced cell responses and whether this might occur early in PDAC development.

Methods

In situ analysis comprised immunohistochemical stainings of activated (phosphorylated) Nrf2 and Ki67 in pancreatic tissues containing normal ducts and pancreatic intraepithelial neoplasia (PanINs). In vitro, Nrf2 levels in benign (H6c7-pBp), premalignant (H6c7-kras) and malignant (Colo357) pancreatic ductal epithelial cells were modulated by Nrf2 specific siRNA or Nrf2 overexpression. Then, the effect of Nrf2 alone and in combination with TGF-β1 on cell growth and survival was investigated by cell counting, Ki67 staining and apoptosis assays. The underlying cell signaling was investigated by western blotting. Statistical analysis was performed by Shapiro-Wilk test for normal distribution. Parametric data were analyzed by one-way ANOVA, while non-parametric data were analyzed by Kruskal-Wallis one-way ANOVA on ranks.

Results

Significantly elevated expression of activated Nrf2 and Ki67 could be detected in PanINs but not in normal pancreatic ductal epithelium. While the effect of Nrf2 on basal cell growth of H6c7-pBp, H6c7-kras and Colo357 cells was minor, it clearly attenuated the growth inhibiting effects of TGF-β1 in all cell lines. This enhanced Nrf2-mediated cell survival was predominantly based on an enhanced proliferative activity. Accordingly, expression of p21 expression along with expression of phospho-p38 and phospho-Smad3 was diminished whereas Erk-phosphorylation was enhanced under these conditions.

Conclusions

Overall, our data demonstrate that Nrf2 being elevated in early precursor lesions counteracts the growth inhibiting function of TGF-β1 already in benign and premalignant pancreatic ductal epithelial cells. This could represent one fundamental mechanism underlying the functional switch of both- TGF-β1 and Nrf2 – which may manifest already in early stages of PDAC development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.CrossRefPubMed Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.CrossRefPubMed
2.
go back to reference Esposito I, Konukiewitz B, Schlitter AM, Klöppel G. Neue Einblicke in die Entstehung des Pankreaskarzinoms. Pathologe. 2012;33:189–93.CrossRefPubMed Esposito I, Konukiewitz B, Schlitter AM, Klöppel G. Neue Einblicke in die Entstehung des Pankreaskarzinoms. Pathologe. 2012;33:189–93.CrossRefPubMed
3.
go back to reference Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012;142:730–3.PubMedCentralCrossRefPubMed Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012;142:730–3.PubMedCentralCrossRefPubMed
4.
go back to reference Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4:437–50.CrossRefPubMed Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4:437–50.CrossRefPubMed
5.
go back to reference Kleeff J, Beckhove P, Esposito I, Herzig S, Huber PE, Löhr JM, et al. Pancreatic cancer microenvironment. Int J Cancer. 2007;121:699–705.CrossRefPubMed Kleeff J, Beckhove P, Esposito I, Herzig S, Huber PE, Löhr JM, et al. Pancreatic cancer microenvironment. Int J Cancer. 2007;121:699–705.CrossRefPubMed
7.
go back to reference Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer. 2013;108:914–23.PubMedCentralCrossRefPubMed Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer. 2013;108:914–23.PubMedCentralCrossRefPubMed
8.
go back to reference Helm O, Mennrich R, Petrick D, Goebel L, Freitag-Wolf S, Röder C, et al. Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PloS ONE. 2014;9:e94357.PubMedCentralCrossRefPubMed Helm O, Mennrich R, Petrick D, Goebel L, Freitag-Wolf S, Röder C, et al. Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PloS ONE. 2014;9:e94357.PubMedCentralCrossRefPubMed
9.
go back to reference Shi C, Washington MK, Chaturvedi R, Drosos Y, Revetta FL, Weaver CJ, et al. Fibrogenesis in pancreatic cancer is a dynamic process regulated by macrophage-stellate cell interaction. Lab Invest. 2014;94:409–21.PubMedCentralCrossRefPubMed Shi C, Washington MK, Chaturvedi R, Drosos Y, Revetta FL, Weaver CJ, et al. Fibrogenesis in pancreatic cancer is a dynamic process regulated by macrophage-stellate cell interaction. Lab Invest. 2014;94:409–21.PubMedCentralCrossRefPubMed
10.
go back to reference Hernández-Muñoz I, Skoudy A, Real FX, Navarro P. Pancreatic ductal adenocarcinoma: cellular origin, signaling pathways and stroma contribution. Pancreatology. 2008;8:462–9.CrossRefPubMed Hernández-Muñoz I, Skoudy A, Real FX, Navarro P. Pancreatic ductal adenocarcinoma: cellular origin, signaling pathways and stroma contribution. Pancreatology. 2008;8:462–9.CrossRefPubMed
12.
go back to reference Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, Bartholin L, et al. TGF-β: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst. 2014;106:djt369.PubMedCentralCrossRefPubMed Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, Bartholin L, et al. TGF-β: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst. 2014;106:djt369.PubMedCentralCrossRefPubMed
13.
go back to reference Inman GJ. Switching TGFβ from a tumor suppressor to a tumor promoter. Curr Opin Genet Dev. 2011;21:93–9.CrossRefPubMed Inman GJ. Switching TGFβ from a tumor suppressor to a tumor promoter. Curr Opin Genet Dev. 2011;21:93–9.CrossRefPubMed
14.
go back to reference Geismann C, Arlt A, Sebens S, Schäfer H. Cytoprotection “gone astray”: Nrf2 and its role in Cancer. Onco Targets Ther. 2014;7:1497–518.PubMedCentralPubMed Geismann C, Arlt A, Sebens S, Schäfer H. Cytoprotection “gone astray”: Nrf2 and its role in Cancer. Onco Targets Ther. 2014;7:1497–518.PubMedCentralPubMed
15.
go back to reference Sporn MB, Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer. 2012;12:564–71.CrossRefPubMed Sporn MB, Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer. 2012;12:564–71.CrossRefPubMed
17.
go back to reference Lister A, Nedjadi T, Kitteringham NR, Campbell F, Costello E, Lloyd B, et al. Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy. Mol Cancer. 2011;10:37.PubMedCentralCrossRefPubMed Lister A, Nedjadi T, Kitteringham NR, Campbell F, Costello E, Lloyd B, et al. Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy. Mol Cancer. 2011;10:37.PubMedCentralCrossRefPubMed
18.
go back to reference Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse M-L, et al. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene. 2013;32:4825–35.CrossRefPubMed Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse M-L, et al. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene. 2013;32:4825–35.CrossRefPubMed
19.
20.
21.
go back to reference Kim WD, Kim YW, Cho IJ, Lee CH, Kim SG. E-cadherin inhibits nuclear accumulation of Nrf2: implications for chemoresistance of cancer cells. J Cell Sci. 2012;125:1284–95.CrossRefPubMed Kim WD, Kim YW, Cho IJ, Lee CH, Kim SG. E-cadherin inhibits nuclear accumulation of Nrf2: implications for chemoresistance of cancer cells. J Cell Sci. 2012;125:1284–95.CrossRefPubMed
22.
go back to reference Shen H, Yang Y, Xia S, Rao B, Zhang J, Wang J. Blockage of Nrf2 suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment. Dis Esophagus. 2014;27:685–92.CrossRefPubMed Shen H, Yang Y, Xia S, Rao B, Zhang J, Wang J. Blockage of Nrf2 suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment. Dis Esophagus. 2014;27:685–92.CrossRefPubMed
23.
go back to reference Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. 2407-13-380. Cancer Cell. 2012;22:66–79.CrossRefPubMed Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. 2407-13-380. Cancer Cell. 2012;22:66–79.CrossRefPubMed
24.
25.
go back to reference DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475:106–9.PubMedCentralCrossRefPubMed DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475:106–9.PubMedCentralCrossRefPubMed
26.
go back to reference Choi HK, Pokharel YR, Lim SC, Han HK, Ryu CS, Kim SK, et al. Inhibition of liver fibrosis by solubilized coenzyme Q10: Role of Nrf2 activation in inhibiting transforming growth factor-beta1 expression. Toxicol Appl Pharmacol. 2009;240:377–84.CrossRefPubMed Choi HK, Pokharel YR, Lim SC, Han HK, Ryu CS, Kim SK, et al. Inhibition of liver fibrosis by solubilized coenzyme Q10: Role of Nrf2 activation in inhibiting transforming growth factor-beta1 expression. Toxicol Appl Pharmacol. 2009;240:377–84.CrossRefPubMed
27.
go back to reference Oh CJ, Kim JY, Min AK, Park KG, Harris RA, Kim HJ, et al. Sulforaphane attenuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β/Smad signaling. Free Radic Biol Med. 2012;52:671–82.CrossRefPubMed Oh CJ, Kim JY, Min AK, Park KG, Harris RA, Kim HJ, et al. Sulforaphane attenuates hepatic fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β/Smad signaling. Free Radic Biol Med. 2012;52:671–82.CrossRefPubMed
28.
go back to reference Qian J, Niu J, Li M, Chiao PJ, Tsao MS. In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by Kras oncogenic activation in pancreatic carcinogenesis. Cancer Res. 2005;65:5045–53.CrossRefPubMed Qian J, Niu J, Li M, Chiao PJ, Tsao MS. In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by Kras oncogenic activation in pancreatic carcinogenesis. Cancer Res. 2005;65:5045–53.CrossRefPubMed
29.
go back to reference Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR, et al. Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of Kras, p53, p16 and DPC4/Smad4. Virchows Arch. 2001;439:798–802.CrossRefPubMed Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR, et al. Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of Kras, p53, p16 and DPC4/Smad4. Virchows Arch. 2001;439:798–802.CrossRefPubMed
30.
go back to reference Dai JL, Turnacioglu KK, Schutte M, Sugar AY, Kern SE. Dpc4 transcriptional activation and dysfunction in cancer cells. Cancer Res. 1998;58:4592–7.PubMed Dai JL, Turnacioglu KK, Schutte M, Sugar AY, Kern SE. Dpc4 transcriptional activation and dysfunction in cancer cells. Cancer Res. 1998;58:4592–7.PubMed
31.
go back to reference Sebens Müerköster S, Rausch AV, Isberner A, Minkenberg J, Blasczcuk E, Witt M, et al. The apoptosis-inducing effect of gastrin on colorectal cancer cells relates to an increased IEX-1 expression mediating NF-kB inhibition. Oncogene. 2008;27:1122–34.CrossRefPubMed Sebens Müerköster S, Rausch AV, Isberner A, Minkenberg J, Blasczcuk E, Witt M, et al. The apoptosis-inducing effect of gastrin on colorectal cancer cells relates to an increased IEX-1 expression mediating NF-kB inhibition. Oncogene. 2008;27:1122–34.CrossRefPubMed
32.
go back to reference Sebens Muerkoster S, Werbing V, Sipos B, Debus MA, Witt M, Grossmann M, et al. Drug-induced expression of the cellular adhesion molecule L1CAM confers anti-apoptotic protection and chemoresistance in pancreatic ductal adenocarcinoma cells. Oncogene. 2007;26:2759–68.CrossRefPubMed Sebens Muerkoster S, Werbing V, Sipos B, Debus MA, Witt M, Grossmann M, et al. Drug-induced expression of the cellular adhesion molecule L1CAM confers anti-apoptotic protection and chemoresistance in pancreatic ductal adenocarcinoma cells. Oncogene. 2007;26:2759–68.CrossRefPubMed
33.
go back to reference Müerköster S, Wegehenkel K, Arlt A, Witt M, Sipos B, Kruse ML, et al. Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Res. 2004;64:1331–7.CrossRefPubMed Müerköster S, Wegehenkel K, Arlt A, Witt M, Sipos B, Kruse ML, et al. Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Res. 2004;64:1331–7.CrossRefPubMed
34.
go back to reference Detlefsen S, Sipos B, Feyerabend B, Klöppel G. Pancreatic fibrosis associated with age and ductal papillary hyperplasia. Virchows Arch. 2005;447:800–5.CrossRefPubMed Detlefsen S, Sipos B, Feyerabend B, Klöppel G. Pancreatic fibrosis associated with age and ductal papillary hyperplasia. Virchows Arch. 2005;447:800–5.CrossRefPubMed
35.
go back to reference Lüttges J, Reinecke-Lüthge A, Möllmann B, Menke MA, Clemens A, Klimpfinger M, et al. Duct changes and Kras mutations in the disease-free pancreas: analysis of type, age relation and spatial distribution. Virchows Arch. 1999;435:461–8.CrossRefPubMed Lüttges J, Reinecke-Lüthge A, Möllmann B, Menke MA, Clemens A, Klimpfinger M, et al. Duct changes and Kras mutations in the disease-free pancreas: analysis of type, age relation and spatial distribution. Virchows Arch. 1999;435:461–8.CrossRefPubMed
36.
go back to reference Sipos B, Möser S, Kalthoff H, Török V, Löhr M, Klöppel G. A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch. 2003;442:444–52.PubMed Sipos B, Möser S, Kalthoff H, Török V, Löhr M, Klöppel G. A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch. 2003;442:444–52.PubMed
37.
go back to reference Arfmann-Knübel S, Struck B, Genrich G, Helm O, Sipos B, Sebens S, et al. The Crosstalk between Nrf2 and TGF-β1 in the Epithelial-Mesenchymal Transition of Pancreatic Duct Epithelial Cells. PLoS ONE. 2015;10:e0132978.PubMedCentralCrossRefPubMed Arfmann-Knübel S, Struck B, Genrich G, Helm O, Sipos B, Sebens S, et al. The Crosstalk between Nrf2 and TGF-β1 in the Epithelial-Mesenchymal Transition of Pancreatic Duct Epithelial Cells. PLoS ONE. 2015;10:e0132978.PubMedCentralCrossRefPubMed
38.
go back to reference Rane SG, Lee JH, Lin HM. Transforming growth factor-beta pathway: role in pancreas development and pancreatic disease. Cytokine Growth Factor Rev. 2006;17:107–19.CrossRefPubMed Rane SG, Lee JH, Lin HM. Transforming growth factor-beta pathway: role in pancreas development and pancreatic disease. Cytokine Growth Factor Rev. 2006;17:107–19.CrossRefPubMed
39.
go back to reference Geismann C, Morscheck M, Koch D, Bergmann F, Ungefroren H, Arlt A, et al. Up-regulation of L1CAM in pancreatic duct cells is transforming growth factor beta1- and slug-dependent: role in malignant transformation of pancreatic cancer. Cancer Res. 2009;69:4517–26.CrossRefPubMed Geismann C, Morscheck M, Koch D, Bergmann F, Ungefroren H, Arlt A, et al. Up-regulation of L1CAM in pancreatic duct cells is transforming growth factor beta1- and slug-dependent: role in malignant transformation of pancreatic cancer. Cancer Res. 2009;69:4517–26.CrossRefPubMed
40.
go back to reference Birnbaum DJ, Mamessier E, Birnbaum D. The emerging role of the TGFβ tumor suppressor pathway in pancreatic cancer. Cell Cycle. 2012;11:683–6.CrossRefPubMed Birnbaum DJ, Mamessier E, Birnbaum D. The emerging role of the TGFβ tumor suppressor pathway in pancreatic cancer. Cell Cycle. 2012;11:683–6.CrossRefPubMed
41.
go back to reference Gotzmann J, Huber H, Thallinger C, Wolschek M, Jansen B, Schulte-Hermann R, et al. Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-beta1 and Ha-Ras: steps towards invasiveness. J Cell Sci. 2002;115:1189–202.PubMed Gotzmann J, Huber H, Thallinger C, Wolschek M, Jansen B, Schulte-Hermann R, et al. Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-beta1 and Ha-Ras: steps towards invasiveness. J Cell Sci. 2002;115:1189–202.PubMed
43.
go back to reference Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer. Free Radic Biol Med. 2012;52:2013–37.CrossRefPubMed Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer. Free Radic Biol Med. 2012;52:2013–37.CrossRefPubMed
44.
go back to reference Banerjee P, Basu A, Datta D, Gasser M, Waaga-Gasser AM, Pal S. The heme oxygenase-1 protein is overexpressed in human renal cancer cells following activation of the Ras-Raf-ERK pathway and mediates anti-apoptotic signal. J Biol Chem. 2011;286:33580–90.PubMedCentralCrossRefPubMed Banerjee P, Basu A, Datta D, Gasser M, Waaga-Gasser AM, Pal S. The heme oxygenase-1 protein is overexpressed in human renal cancer cells following activation of the Ras-Raf-ERK pathway and mediates anti-apoptotic signal. J Biol Chem. 2011;286:33580–90.PubMedCentralCrossRefPubMed
45.
go back to reference Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci. 2009;34:176–88.CrossRefPubMed Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci. 2009;34:176–88.CrossRefPubMed
46.
go back to reference Ganan-Gomez I, Wei Y, Yang H, Boyano-Adanez MC, Garcia-Manero G. Oncogenic functions of the transcription factor Nrf2. Free Radic Biol Med. 2013;65:750–64.CrossRefPubMed Ganan-Gomez I, Wei Y, Yang H, Boyano-Adanez MC, Garcia-Manero G. Oncogenic functions of the transcription factor Nrf2. Free Radic Biol Med. 2013;65:750–64.CrossRefPubMed
47.
go back to reference Sebens S, Bauer I, Geismann C, Grage-Griebenow E, Ehlers S, Kruse M-L, et al. Inflammatory macrophages induce Nrf2 dependent proteasome activity in colonic NCM460 cells and thereby confer anti-apoptotic protection. J Biol Chem. 2011;286:40911–21.PubMedCentralCrossRefPubMed Sebens S, Bauer I, Geismann C, Grage-Griebenow E, Ehlers S, Kruse M-L, et al. Inflammatory macrophages induce Nrf2 dependent proteasome activity in colonic NCM460 cells and thereby confer anti-apoptotic protection. J Biol Chem. 2011;286:40911–21.PubMedCentralCrossRefPubMed
Metadata
Title
The anti-oxidative transcription factor Nuclear factor E2 related factor-2 (Nrf2) counteracts TGF-β1 mediated growth inhibition of pancreatic ductal epithelial cells -Nrf2 as determinant of pro-tumorigenic functions of TGF-β1
Authors
Geeske Genrich
Marcus Kruppa
Lennart Lenk
Ole Helm
Anna Broich
Sandra Freitag-Wolf
Christoph Röcken
Bence Sipos
Heiner Schäfer
Susanne Sebens
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2191-7

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine