Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

Aspirin inhibits epithelial-to-mesenchymal transition and migration of oncogenic K-ras-expressing non-small cell lung carcinoma cells by down-regulating E-cadherin repressor Slug

Authors: Poulami Khan, Argha Manna, Shilpi Saha, Suchismita Mohanty, Shravanti Mukherjee, Minakshi Mazumdar, Deblina Guha, Tanya Das

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Cancer metastasis is one of the most common causes of treatment failure and death in cancer patients. It has been acknowledged that aberrant activation of epithelial-to-mesenchymal transition (EMT) program, endows cancer cells with metastatic competence for which E-cadherin switch is a well-established hallmark. Suppression of E-cadherin by its transcriptional repressor Slug is thus a determining factor for EMT. Here, we aimed at discerning (i) the molecular mechanisms that regulate Slug/E-cadherin axis in oncogenic K-ras-expressing non-small cell lung carcinoma (NSCLC) cells, and (ii) the effect of aspirin in modulating the same.

Methods

The migratory behaviour of NSCLC cell line A549 were deciphered by wound healing assay. Further assessment of the molecular mechanisms was done by western blotting, RT-PCR, confocal microscopy, chromatin immunoprecipitation and small interfering RNA (siRNA)-mediated gene silencing.

Results

Here we report that in oncogenic K-ras-expressing A549 cells, Ras/ERK downstream Elk-1 forms p-Elk-1-p300 complex that being directly recruited to SLUG promoter acetylates the same to ensure p65NFκB binding for transcriptional up-regulation of Slug, a transcriptional repressor of E-cadherin. Aspirin inhibits EMT and decelerates the migratory potential of A549 cells by down-regulating Slug and thereby up-regulating E-cadherin. Aspirin impedes activation and nuclear translocation of p65NFκB, essential for this transcription factor being available for SLUG promoter binding. As a consequence, Slug transcription is down-regulated relieving A549 cells from Slug-mediated repression of E-cadherin transcription, thereby diminishing the metastatic potential of these oncogenic Ras-expressing NSCLC cells.

Conclusions

Cumulatively, these results signify a crucial role of the anti-inflammatory agent aspirin as a novel negative regulator of epithelial-to-mesenchymal transition thereby suggesting its candidature as a promising tool for deterring metastasis of highly invasive K-ras-expressing NSCLC cells.
Appendix
Available only for authorised users
Footnotes
1
Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–454.
 
2
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196.
 
3
Singhai R, Patil VW, Jaiswal SR, Patil SD, Tayade MB, Patil AV. E-Cadherin as a diagnostic biomarker in breast cancer. N Am J Med Sci. 2011;3(5):227–233.
 
4
Mareel M, Leroy A. Clinical, cellular and molecular aspects of cancer invasion. Physiol Rev. 2003;83(2):337–376.
 
5
Bremnes RM, Veve R, Gabrielson E, Hirsch FR, Baron A, Bemis L, et al. High-throughput microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in small cell lung cancer. J Clin Oncol. 2002;20(10):2417–2428.
 
6
Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991;113(1):173–185.
 
7
Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002;62(6):1613–1618.
 
8
Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002;62(6):1613–1618.
 
9
Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002;62(6):1613–1618.
 
10
Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–166.
 
11
Bolós V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116(Pt 3):499–511.
 
12
Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002;62(6):1613–1618.
 
13
Han CB, Li F, Ma JT, Zou HW. Concordant KRAS mutations in primary and metastatic colorectal cancer tissue specimens: a meta-analysis and systematic review. Cancer Invest. 2012;30(10):741–747.
 
14
Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K, et al. Heterogeneity of KRAS status may explain the subset of discordant KRAS status between primary and metastatic colorectal cancer. Dis Colon Rectum. 2011;54(9):1170–1178.
 
15
Wang XQ, Li H, Van Putten V, Winn RA, Heasley LE, Nemenoff RA. Oncogenic K-Ras Regulates Proliferation and Cell Junctions in Lung Epithelial Cells through Induction of Cyclooxygenase-2 and Activation of Metalloproteinase-9. Mol Biol Cell. 2009;20(3):791–800.
 
16
Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–428.
 
17
Dohadwala M, Yang SC, Luo J, Sharma S, Batra RK, Huang M, et al. Cyclooxygenase-2–Dependent Regulation of E-Cadherin: Prostaglandin E2 Induces Transcriptional Repressors ZEB1and Snail in Non–Small Cell Lung Cancer. Cancer Res. 2006;66(10):5338–5345.
 
18
Rebollo A, A CM. Ras Proteins: Recent Advances and New Functions. Blood. 1999;94(9):2971–2980.
 
19
Hanson JL, AnestV, Madrid JR, Baldwin AS. Oncoprotein Suppression of Tumor Necrosis Factor-induced NFκB Activation Is Independent of Raf-controlled Pathways. J Biol Chem. 2003;278(37):34910–34917.
 
20
Liss AS, Bose HR. Characterization of ATF2 in Rel/NFκBoncogenesis reveals its role in the regulation of Ras signaling. Small GTPases. 2011;2(2):89–94.
 
21
Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ, Baldwin AS, Jr. Oncogenic Ha-Ras-induced Signaling Activates NF-kB Transcriptional Activity, Which Is Required for Cellular Transformation. J Biol Chem. 1997;272(39):24113–24116.
 
22
Bassères DS, Ebbs A, E Levantini, AS Baldwin. Requirement of the NF-κB Subunit p65/RelA for K-Ras–Induced Lung Tumorigenesis. Cancer Res. 2010; 70(9):3537–3546.
 
23
Arsura M, Mercurio F, Oliver AL, Thorgeirsson SS, Sonenshein GE. Role of the IκB Kinase Complex in Oncogenic Ras- and Raf-Mediated Transformation of Rat Liver Epithelial Cells. Mol Cell Biol. 2000;20(15):5381–5391.
 
24
Liu Y, Mayo MW, Nagji AS, Smith PW, Ramsey CS, Li D, et al. Phosphorylation of RelA/p65 promotes DNMT-1 recruitment to chromatin and represses transcription of the tumor metastasis suppressor gene BRMS1. Oncogene. 2012;31(9):1143–1154.
 
25
Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.
 
26
Xiao J, Duan X, Yin Q, Miao Z, Yu H, Chen C, et al. The inhibition of metastasis and growth of breast cancer by blocking the NFκB signaling pathway using bioreducible PEI-based/p65 shRNA complex nanoparticles. Biomaterials. 2013;34(21):5381–5390.
 
27
Huber MA, Azoitei N, Baumann B, Grünert S, Sommer A, Pehamberger H, et al. NF-κB is essential for epithelialmesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest. 2004;114(4):569–581.
 
28
Fraser DM, Sullivan FM, Thompson AM, McCowan C. Aspirin use and survival after the diagnosis of breast cancer: a population-based cohort study. Br J Cancer. 2014;111(3):623–627.
 
29
Holick CN, Michaud DS, Leitzmann MF, Willett WC, Giovannucci E. Aspirin use and lung cancer in men. Br J Cancer. 2003;89(9):1705–1708.
 
30
Dyke ALV, Cote ML, Prysak G, Claeys GB, Wenzlaff AS, Schwartz AG. Regular Adult Aspirin Use Decreases the Risk of Non-Small Cell Lung Cancer among Women. Cancer Epidemiol Biomarkers Prev. 2008;17(1):148–157.
 
31
Moysich KB, Menezes RJ, Ronsani A, Swede H, Reid ME, Cummings KM, et al. Regular aspirin use and lung cancer risk. BMC Cancer. 2002;2:31.
 
32
Wang HL, Lopategui J, Amin MB, Patterson SD. KRAS Mutation Testing in Human Cancers: The Pathologist’s Role in the Era of Personalized Medicine. Adv Anat Pathol. 2010;17(1):23–32.
 
33
Wang Y, Ngo VN, Marani M, Yang Y, Wright G, Staudt LM, et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene. 2010;29(33):4658–4670.
 
34
Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994;265:346–355.
 
35
Adhikary A, Chakraborty S, Mazumdar M, Ghosh S, Mukherjee S, Manna A, et al. Inhibition of Epithelial to Mesenchymal Transition by E-cadherin Up-regulation via Repression of Slug Transcription and Inhibition of E-cadherin Degradation Dual Roleof Scaffold/Matrix Attachment Region-Binding Protein 1 (SMAR1) in Breast Cancer Cells. J Biol Chem. 2014;289(37):25431–25444.
 
36
Bolós V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116:499-511.
 
37
Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–3310.
 
38
Aplin AE, Stewart SA, Assoian RK, Juliano RL. Integrin-Mediated Adhesion Regulates ERK Nuclear Translocation and Phosphorylation of Elk-1. J Cell Biol. 2001;153(2):273–281.
 
39
Shin SY, Kim CG, Lim Y, Lee YH. The Ets Family Transcription Factor Elk-1 Regulates Induction of the Cell cycle Regulatory Gene p21Waf1/Cip1 and the Bax Gene in Sodium Arsenite-Exposed Human Keratinocyte HaCaT cells. J Biol Chem. 2011;286(30):26860–26872.
 
40
Yang SH, Yates PR, Whitmarsh AJ, Davis RJ, Sharrocks AD. The Elk-1 Ets-domain transcription factor contains a mitogen-activated protein kinase targeting motif. Mol Cell Biol. 1998;18(2):710–720.
 
41
Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia. 2003;17(7):1263–1293.
 
42
Mohanty S, Saha S, Hossain DMS, Adhikary A, Mukherjee S, Manna A, et al. ROS-PIASγccross talk channelizes ATM signaling from resistance to apoptosis during chemosensitization of resistant tumors. Cell Death Dis. 2014;5:e1021. doi:10.​1038/​cddis.​2013.​534.
 
43
Jo H, Zhang R, Zhang H, McKinsey TA, Shao J, Beauchamp RD, et al. NF-kB is required for H-ras oncogene induced abnormal cell proliferation and tumorigenesis. Oncogene. 2000;19(7):841–849.
 
44
Wu DW, Lee MC, Hsu NY, Wu TC, Wu JY, Wanget YC, et al. FHIT loss confers cisplatin resistance in lung cancer via the AKT/NF-κB/Slug-mediated PUMA reduction. Oncogene. 2015;34(19):2505-15.
 
45
Kopp E, Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science. 1994;265(5174):956–959.
 
46
Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001;107(2):135–142.
 
47
Thun MJ, Jacobs EJ, Patrono C. The role of aspirin in cancer prevention. Nat Rev Clin Oncol. 2012;9(5):259–267.
 
48
Norrish AE, Jackson RT, McRae CU. Non-steroidal anti-inflammatory drugs and prostate cancer progression. Int J Cancer. 1998;77(4):511–515.
 
49
Gilmore TD, Herscovitch M. Inhibitors of NFκB signaling: 785 and counting. Oncogene. 2006;25(51):6887–6899.
 
50
Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, MehtaZ. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet. 2012;379(9826):1591–1601.
 
51
Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012;13(5):518–527.
 
52
Wynne S, Djakiew D. NSAID Inhibition of Prostate Cancer Cell Migration Is Mediated by Nag-1 Induction via the p38 MAPK-p75(NTR) Pathway. Mol Cancer Res. 2010;8(12):1656–1664.
 
53
Schrör, K. Clinical Applications of Aspirin, In: Acetylsalicylic Acid, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. 2008.
 
54
Brady RR, Loveridge CJ, Dunlop MG, Stark LA. c-Src dependency of NSAID-induced effects on NF-kB-mediated apoptosis in colorectal cancer cells. Carcinogenesis. 2011;32(7):1069–1077.
 
55
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–1428.
 
56
Tsai JH, Yang J. Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27(20):2192–2206.
 
57
Lemieux E, Cagnol S, Beaudry K, Carrier J, Rivard N.. Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene. 2015;34(38):4914-27.
 
58
Shin S, Blenis J. ERK2/Fra1/ZEB pathway induces epithelial-tomesenchymal transition. Cell Cycle. 2010;9(13):2483–2484.
 
59
Li QJ, Yang SH, Maeda Y, Sladek FM, Sharrocks AD, Martins-Green M. MAP kinase phosphorylation-dependent activation of Elk–1 leads to activation of the co-activator p300. EMBO J. 2003;22(2):281–291.
 
60
Li QJ, Yang SH, Maeda Y, Sladek FM, Sharrocks AD, Martins-Green M. MAP kinase phosphorylation-dependent activation of Elk-1 leads to activation of the co-activator p300. EMBO J. 2003;22(2):281–291.
 
61
Li QJ, Yang SH, Maeda Y, Sladek FM, Sharrocks AD, Martins-Green M. MAP kinase phosphorylation-dependent activation of Elk-1 leads to activation of the co-activator p300. EMBO J. 2003;22(2):281–291.
 
62
Bassères DS, Ebbs A, E Levantini, AS Baldwin. Requirement of the NF-κB Subunit p65/RelA for K-Ras–Induced Lung Tumorigenesis. Cancer Res. 2010; 70(9):3537–3546. doi: 10.​1158/​0008–5472.​CAN-09–4290.
 
63
Bassères DS, Ebbs A, E Levantini, AS Baldwin. Requirement of the NF-κB Subunit p65/RelA for K-Ras–Induced Lung Tumorigenesis. Cancer Res. 2010; 70(9):3537–3546. doi: 10.​1158/​0008–5472.​CAN-09–4290.
 
64
Arsura M, Mercurio F, Oliver AL, Thorgeirsson SS, Sonenshein GE. Role of the IκB Kinase Complex in Oncogenic Ras- and Raf-Mediated Transformation of Rat Liver Epithelial Cells. Mol Cell Biol. 2000;20(15):5381–5391.
 
65
Mohanty S, Saha S, Hossain DMS, Adhikary A, Mukherjee S, Manna A, et al. ROS-PIASγccross talk channelizes ATM signaling from resistance to apoptosis during chemosensitization of resistant tumors. Cell Death Dis. 2014;5:e1021. doi:10.​1038/​cddis.​2013.​534.
 
66
Wang Y, Yue B, Yu X, Wang Z, Wang M. SLUG is activated by nuclear factor kappa B and confers human alveolar epithelial A549 cells resistance to tumor necrosis factor-alpha induced apoptosis. World J Surg Oncol. 2013 Jan 22;11:12. doi: 10.​1186/​1477–7819–11-12.
 
67
Brandl M, Seidler B, Haller F, Adamski J, Schmid RM, Saur D, et al. IKKαcontrols canonical TGFβ–SMAD signaling to regulate genes expressing SNAIL and SLUG during EMT in Panc1 cells. J Cell Sci. 2010;123(Pt 24):4231–4239.
 
68
Yotsui T, Yasuda O, Kawamoto H, Higuchi M, Chihara Y, Umemoto E, et al. Aspirin prevents adhesion of T lymphoblasts to vascular smooth muscle cells. FEBS Lett. 2007;581(3):427–432.
 
69
Brady RR, Loveridge CJ, Dunlop MG, Stark LA. c-Src dependency of NSAID-induced effects on NF-kB-mediated apoptosis in colorectal cancer cells. Carcinogenesis. 2011;32(7):1069–1077.
 
70
Helbig G, Christopherson KW2nd, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, et al. NFkB Promotes Breast Cancer Cell Migration and Metastasis by Inducing the Expression of the Chemokine Receptor CXCR4. J Biol Chem. 2003;278(24):21631–21638.
 
71
Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M. The Role of Cyclooxygenase-2 in Cell Proliferation and Cell Death in Human Malignancies. Int J Cell Biol. 2010;2010:215158.
 
72
Chakraborty S, Mazumdar M, Mukherjee S, Bhattacharjee P, Adhikary A, Manna A, et al. Restoration of p53/miR-34a regulatory axis decreases survival advantage and ensures Bax-dependent apoptosis of non-small cell lung carcinoma cells. FEBS Lett. 2014;588(4):549–559.
 
73
Adhikary A, Chakraborty S, Mazumdar M, Ghosh S, Mukherjee S, Manna A, et al. Inhibition of Epithelial to Mesenchymal Transition by E-cadherin Up-regulation via Repression of Slug Transcription and Inhibition of E-cadherin Degradation Dual Role of Scaffold/Matrix Attachment Region-Binding Protein1 (SMAR1) in Breast Cancer Cells. J Biol Chem. 2014;289(37):25431–25444.
 
74
Saha B, Adhikary A, Ray P, Saha S, Chakraborty S, Mohanty S, et al. Restoration of tumor suppressor p53 by differentially regulating pro- and anti-p53 networks in HPV-18-infected cervical cancer cells. Oncogene. 2012;31(2):173–186.
 
75
Mukherjee S, Mazumdar M, Chakraborty S, Manna A, Saha S, Khan P, et al. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res Ther. 2014;5(5):116.
 
76
Lahiry L, Saha B, Chakraborty J, Adhikary A, Mohanty S, Hossain DMS, et al. Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis. 2010;31(2):259–268.
 
77
Hossain DMS, Panda AK, Manna A, Mohanty S, Bhattacharjee P, Bhattacharyya S, et al. FoxP3 Acts as a Cotranscription Factor with STAT3 in Tumor-Induced Regulatory T Cells. Immunity. 2013;39(6):1057–1069.
 
78
Mazumdar M, Adhikary A, Chakraborty S, Mukherjee S, Manna A, Saha S, et al. Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways. Apoptosis. 2013; 18(5):589–604.
 
79
Saha S, MukherjeeS, MazumdarM, MannaA, KhanP, AdhikaryA, et al. Mithramycin A sensitizes therapy-resistant breast cancer stem cells toward genotoxic drug doxorubicin. Transl Res. 2015;165(5):558–577.
 
80
Chakraborty J, Banerjee S, Ray P, DMS Hossain, S Bhattacharyya, Adhikary A, et al. Gain of Cellular Adaptation Due to Prolonged p53 Impairment Leads to Functional Switchover from p53 to p73 during DNA Damage in Acute Myeloid Leukemia Cells. J Biol Chem. 2010;285(43):33104–33112.
 
81
Chakraborty S, Das K, Saha S, Mazumdar M, Manna A, Chakraborty S, et al. Nuclear Matrix Protein SMAR1 Represses c-Fos-mediated HPV18 E6 Transcription through Alteration of Chromatin Histone Deacetylation. J Biol Chem. 2014;289(42):29074–29085.
 
Literature
1.
go back to reference Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.CrossRefPubMed Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.CrossRefPubMed
3.
go back to reference Singhai R, Patil VW, Jaiswal SR, Patil SD, Tayade MB, Patil AV. E-Cadherin as a diagnostic biomarker in breast cancer. N Am J Med Sci. 2011;3(5):227–33.CrossRefPubMedPubMedCentral Singhai R, Patil VW, Jaiswal SR, Patil SD, Tayade MB, Patil AV. E-Cadherin as a diagnostic biomarker in breast cancer. N Am J Med Sci. 2011;3(5):227–33.CrossRefPubMedPubMedCentral
4.
go back to reference Mareel M, Leroy A. Clinical, cellular and molecular aspects of cancer invasion. Physiol Rev. 2003;83(2):337–76.CrossRefPubMed Mareel M, Leroy A. Clinical, cellular and molecular aspects of cancer invasion. Physiol Rev. 2003;83(2):337–76.CrossRefPubMed
5.
go back to reference Bremnes RM, Veve R, Gabrielson E, Hirsch FR, Baron A, Bemis L, et al. High-throughput microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in small cell lung cancer. J Clin Oncol. 2002;20(10):2417–28.CrossRefPubMed Bremnes RM, Veve R, Gabrielson E, Hirsch FR, Baron A, Bemis L, et al. High-throughput microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in small cell lung cancer. J Clin Oncol. 2002;20(10):2417–28.CrossRefPubMed
6.
go back to reference Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991;113(1):173–85.CrossRefPubMed Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991;113(1):173–85.CrossRefPubMed
7.
go back to reference Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002;62(6):1613–8.PubMed Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002;62(6):1613–8.PubMed
8.
go back to reference Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–66.CrossRefPubMed Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–66.CrossRefPubMed
9.
go back to reference Bolós V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116(Pt 3):499–511.CrossRefPubMed Bolós V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116(Pt 3):499–511.CrossRefPubMed
10.
go back to reference Han CB, Li F, Ma JT, Zou HW. Concordant KRAS mutations in primary and metastatic colorectal cancer tissue specimens: a meta-analysis and systematic review. Cancer Invest. 2012;30(10):741–7.CrossRefPubMed Han CB, Li F, Ma JT, Zou HW. Concordant KRAS mutations in primary and metastatic colorectal cancer tissue specimens: a meta-analysis and systematic review. Cancer Invest. 2012;30(10):741–7.CrossRefPubMed
11.
go back to reference Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K, et al. Heterogeneity of KRAS status may explain the subset of discordant KRAS status between primary and metastatic colorectal cancer. Dis Colon Rectum. 2011;54(9):1170–8.CrossRefPubMed Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K, et al. Heterogeneity of KRAS status may explain the subset of discordant KRAS status between primary and metastatic colorectal cancer. Dis Colon Rectum. 2011;54(9):1170–8.CrossRefPubMed
12.
go back to reference Wang XQ, Li H, Van Putten V, Winn RA, Heasley LE, Nemenoff RA. Oncogenic K-Ras regulates proliferation and cell junctions in lung epithelial cells through induction of cyclooxygenase-2 and activation of metalloproteinase-9. Mol Biol Cell. 2009;20(3):791–800.CrossRefPubMedPubMedCentral Wang XQ, Li H, Van Putten V, Winn RA, Heasley LE, Nemenoff RA. Oncogenic K-Ras regulates proliferation and cell junctions in lung epithelial cells through induction of cyclooxygenase-2 and activation of metalloproteinase-9. Mol Biol Cell. 2009;20(3):791–800.CrossRefPubMedPubMedCentral
13.
go back to reference Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28.CrossRefPubMed Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28.CrossRefPubMed
14.
go back to reference Dohadwala M, Yang SC, Luo J, Sharma S, Batra RK, Huang M, et al. Cyclooxygenase-2–dependent regulation of E-cadherin: prostaglandin E2 induces transcriptional repressors ZEB1and snail in Non–small cell lung cancer. Cancer Res. 2006;66(10):5338–45.CrossRefPubMed Dohadwala M, Yang SC, Luo J, Sharma S, Batra RK, Huang M, et al. Cyclooxygenase-2–dependent regulation of E-cadherin: prostaglandin E2 induces transcriptional repressors ZEB1and snail in Non–small cell lung cancer. Cancer Res. 2006;66(10):5338–45.CrossRefPubMed
15.
go back to reference Rebollo AACM, Martínez AC. Ras proteins: recent advances and New functions. Blood. 1999;94(9):2971–80.PubMed Rebollo AACM, Martínez AC. Ras proteins: recent advances and New functions. Blood. 1999;94(9):2971–80.PubMed
16.
go back to reference Hanson JL, Anest V, Madrid JR, Baldwin AS. Oncoprotein suppression of tumor necrosis factor-induced NFκB activation is independent of Raf-controlled pathways. J Biol Chem. 2003;278(37):34910–7.CrossRefPubMed Hanson JL, Anest V, Madrid JR, Baldwin AS. Oncoprotein suppression of tumor necrosis factor-induced NFκB activation is independent of Raf-controlled pathways. J Biol Chem. 2003;278(37):34910–7.CrossRefPubMed
17.
go back to reference Liss AS, Bose HR. Characterization of ATF2 in Rel/NFκBoncogenesis reveals its role in the regulation of Ras signaling. Small GTPases. 2011;2(2):89–94.CrossRefPubMedPubMedCentral Liss AS, Bose HR. Characterization of ATF2 in Rel/NFκBoncogenesis reveals its role in the regulation of Ras signaling. Small GTPases. 2011;2(2):89–94.CrossRefPubMedPubMedCentral
18.
go back to reference Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ, Baldwin Jr AS. Oncogenic Ha-Ras-induced signaling activates NF-kB transcriptional activity, which is required for cellular transformation. J Biol Chem. 1997;272(39):24113–6.CrossRefPubMed Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ, Baldwin Jr AS. Oncogenic Ha-Ras-induced signaling activates NF-kB transcriptional activity, which is required for cellular transformation. J Biol Chem. 1997;272(39):24113–6.CrossRefPubMed
19.
go back to reference Bassères DS, Ebbs A, Levantini E, Baldwin AS. Requirement of the NF-κB Subunit p65/RelA for K-Ras–Induced Lung Tumorigenesis. Cancer Res. 2010;70(9):3537–46.CrossRefPubMedPubMedCentral Bassères DS, Ebbs A, Levantini E, Baldwin AS. Requirement of the NF-κB Subunit p65/RelA for K-Ras–Induced Lung Tumorigenesis. Cancer Res. 2010;70(9):3537–46.CrossRefPubMedPubMedCentral
20.
go back to reference Arsura M, Mercurio F, Oliver AL, Thorgeirsson SS, Sonenshein GE. Role of the IκB kinase complex in oncogenic Ras- and Raf-mediated transformation of Rat liver epithelial cells. Mol Cell Biol. 2000;20(15):5381–91.CrossRefPubMedPubMedCentral Arsura M, Mercurio F, Oliver AL, Thorgeirsson SS, Sonenshein GE. Role of the IκB kinase complex in oncogenic Ras- and Raf-mediated transformation of Rat liver epithelial cells. Mol Cell Biol. 2000;20(15):5381–91.CrossRefPubMedPubMedCentral
21.
go back to reference Liu Y, Mayo MW, Nagji AS, Smith PW, Ramsey CS, Li D, et al. Phosphorylation of RelA/p65 promotes DNMT-1 recruitment to chromatin and represses transcription of the tumor metastasis suppressor gene BRMS1. Oncogene. 2012;31(9):1143–54.CrossRefPubMed Liu Y, Mayo MW, Nagji AS, Smith PW, Ramsey CS, Li D, et al. Phosphorylation of RelA/p65 promotes DNMT-1 recruitment to chromatin and represses transcription of the tumor metastasis suppressor gene BRMS1. Oncogene. 2012;31(9):1143–54.CrossRefPubMed
23.
go back to reference Xiao J, Duan X, Yin Q, Miao Z, Yu H, Chen C, et al. The inhibition of metastasis and growth of breast cancer by blocking the NFκB signaling pathway using bioreducible PEI-based/p65 shRNA complex nanoparticles. Biomaterials. 2013;34(21):5381–90.CrossRefPubMed Xiao J, Duan X, Yin Q, Miao Z, Yu H, Chen C, et al. The inhibition of metastasis and growth of breast cancer by blocking the NFκB signaling pathway using bioreducible PEI-based/p65 shRNA complex nanoparticles. Biomaterials. 2013;34(21):5381–90.CrossRefPubMed
24.
go back to reference Huber MA, Azoitei N, Baumann B, Grünert S, Sommer A, Pehamberger H, et al. NF-κB is essential for epithelialmesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest. 2004;114(4):569–81.CrossRefPubMedPubMedCentral Huber MA, Azoitei N, Baumann B, Grünert S, Sommer A, Pehamberger H, et al. NF-κB is essential for epithelialmesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest. 2004;114(4):569–81.CrossRefPubMedPubMedCentral
25.
go back to reference Fraser DM, Sullivan FM, Thompson AM, McCowan C. Aspirin use and survival after the diagnosis of breast cancer: a population-based cohort study. Br J Cancer. 2014;111(3):623–7.CrossRefPubMedPubMedCentral Fraser DM, Sullivan FM, Thompson AM, McCowan C. Aspirin use and survival after the diagnosis of breast cancer: a population-based cohort study. Br J Cancer. 2014;111(3):623–7.CrossRefPubMedPubMedCentral
27.
go back to reference Dyke ALV, Cote ML, Prysak G, Claeys GB, Wenzlaff AS, Schwartz AG. Regular adult aspirin Use decreases the risk of Non-small cell lung cancer among women. Cancer Epidemiol Biomarkers Prev. 2008;17(1):148–57.CrossRefPubMedPubMedCentral Dyke ALV, Cote ML, Prysak G, Claeys GB, Wenzlaff AS, Schwartz AG. Regular adult aspirin Use decreases the risk of Non-small cell lung cancer among women. Cancer Epidemiol Biomarkers Prev. 2008;17(1):148–57.CrossRefPubMedPubMedCentral
29.
go back to reference Wang HL, Lopategui J, Amin MB, Patterson SD. KRAS mutation testing in human cancers: the Pathologist’s role in the Era of personalized medicine. Adv Anat Pathol. 2010;17(1):23–32.PubMed Wang HL, Lopategui J, Amin MB, Patterson SD. KRAS mutation testing in human cancers: the Pathologist’s role in the Era of personalized medicine. Adv Anat Pathol. 2010;17(1):23–32.PubMed
30.
go back to reference Wang Y, Ngo VN, Marani M, Yang Y, Wright G, Staudt LM, et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene. 2010;29(33):4658–70.CrossRefPubMed Wang Y, Ngo VN, Marani M, Yang Y, Wright G, Staudt LM, et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene. 2010;29(33):4658–70.CrossRefPubMed
31.
go back to reference Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994;265:346–55.CrossRefPubMed Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994;265:346–55.CrossRefPubMed
32.
go back to reference Bolós V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116:499–511.CrossRefPubMed Bolós V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116:499–511.CrossRefPubMed
33.
go back to reference Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–310.CrossRefPubMed Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–310.CrossRefPubMed
34.
go back to reference Aplin AE, Stewart SA, Assoian RK, Juliano RL. Integrin-mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. J Cell Biol. 2001;153(2):273–81.CrossRefPubMedPubMedCentral Aplin AE, Stewart SA, Assoian RK, Juliano RL. Integrin-mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. J Cell Biol. 2001;153(2):273–81.CrossRefPubMedPubMedCentral
35.
go back to reference Shin SY, Kim CG, Lim Y, Lee YH. The Ets family transcription factor Elk-1 regulates induction of the cell cycle regulatory gene p21Waf1/Cip1 and the Bax gene in sodium arsenite-exposed human keratinocyte HaCaT cells. J Biol Chem. 2011;286(30):26860–72.CrossRefPubMedPubMedCentral Shin SY, Kim CG, Lim Y, Lee YH. The Ets family transcription factor Elk-1 regulates induction of the cell cycle regulatory gene p21Waf1/Cip1 and the Bax gene in sodium arsenite-exposed human keratinocyte HaCaT cells. J Biol Chem. 2011;286(30):26860–72.CrossRefPubMedPubMedCentral
36.
go back to reference Yang SH, Yates PR, Whitmarsh AJ, Davis RJ, Sharrocks AD. The Elk-1 Ets-domain transcription factor contains a mitogen-activated protein kinase targeting motif. Mol Cell Biol. 1998;18(2):710–20.CrossRefPubMedPubMedCentral Yang SH, Yates PR, Whitmarsh AJ, Davis RJ, Sharrocks AD. The Elk-1 Ets-domain transcription factor contains a mitogen-activated protein kinase targeting motif. Mol Cell Biol. 1998;18(2):710–20.CrossRefPubMedPubMedCentral
37.
go back to reference Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia. 2003;17(7):1263–93.CrossRefPubMed Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia. 2003;17(7):1263–93.CrossRefPubMed
39.
go back to reference Jo H, Zhang R, Zhang H, McKinsey TA, Shao J, Beauchamp RD, et al. NF-kB is required for H-ras oncogene induced abnormal cell proliferation and tumorigenesis. Oncogene. 2000;19(7):841–9.CrossRefPubMed Jo H, Zhang R, Zhang H, McKinsey TA, Shao J, Beauchamp RD, et al. NF-kB is required for H-ras oncogene induced abnormal cell proliferation and tumorigenesis. Oncogene. 2000;19(7):841–9.CrossRefPubMed
40.
go back to reference Wu DW, Lee MC, Hsu NY, Wu TC, Wu JY, Wanget YC, et al. FHIT loss confers cisplatin resistance in lung cancer via the AKT/NF-κB/Slug-mediated PUMA reduction. Oncogene. 2015;34(19):2505–15.CrossRefPubMed Wu DW, Lee MC, Hsu NY, Wu TC, Wu JY, Wanget YC, et al. FHIT loss confers cisplatin resistance in lung cancer via the AKT/NF-κB/Slug-mediated PUMA reduction. Oncogene. 2015;34(19):2505–15.CrossRefPubMed
41.
go back to reference Kopp E, Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science. 1994;265(5174):956–9.CrossRefPubMed Kopp E, Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science. 1994;265(5174):956–9.CrossRefPubMed
42.
go back to reference Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001;107(2):135–42.CrossRefPubMedPubMedCentral Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001;107(2):135–42.CrossRefPubMedPubMedCentral
43.
go back to reference Thun MJ, Jacobs EJ, Patrono C. The role of aspirin in cancer prevention. Nat Rev Clin Oncol. 2012;9(5):259–67.CrossRefPubMed Thun MJ, Jacobs EJ, Patrono C. The role of aspirin in cancer prevention. Nat Rev Clin Oncol. 2012;9(5):259–67.CrossRefPubMed
44.
go back to reference Norrish AE, Jackson RT, McRae CU. Non-steroidal anti-inflammatory drugs and prostate cancer progression. Int J Cancer. 1998;77(4):511–5.CrossRefPubMed Norrish AE, Jackson RT, McRae CU. Non-steroidal anti-inflammatory drugs and prostate cancer progression. Int J Cancer. 1998;77(4):511–5.CrossRefPubMed
45.
go back to reference Gilmore TD, Herscovitch M. Inhibitors of NFκB signaling: 785 and counting. Oncogene. 2006;25(51):6887–99.CrossRefPubMed Gilmore TD, Herscovitch M. Inhibitors of NFκB signaling: 785 and counting. Oncogene. 2006;25(51):6887–99.CrossRefPubMed
46.
go back to reference Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, Mehta Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet. 2012;379(9826):1591–601.CrossRefPubMed Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, Mehta Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet. 2012;379(9826):1591–601.CrossRefPubMed
47.
go back to reference Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012;13(5):518–27.CrossRefPubMed Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012;13(5):518–27.CrossRefPubMed
48.
go back to reference Wynne S, Djakiew D. NSAID inhibition of prostate cancer cell migration is mediated by Nag-1 induction via the p38 MAPK-p75(NTR) pathway. Mol Cancer Res. 2010;8(12):1656–64.CrossRefPubMedPubMedCentral Wynne S, Djakiew D. NSAID inhibition of prostate cancer cell migration is mediated by Nag-1 induction via the p38 MAPK-p75(NTR) pathway. Mol Cancer Res. 2010;8(12):1656–64.CrossRefPubMedPubMedCentral
49.
go back to reference Schrör K. Clinical Applications of Aspirin. In: Acetylsalicylic Acid. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2008.CrossRef Schrör K. Clinical Applications of Aspirin. In: Acetylsalicylic Acid. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2008.CrossRef
50.
go back to reference Brady RR, Loveridge CJ, Dunlop MG, Stark LA. c-Src dependency of NSAID-induced effects on NF-kB-mediated apoptosis in colorectal cancer cells. Carcinogenesis. 2011;32(7):1069–77.CrossRefPubMed Brady RR, Loveridge CJ, Dunlop MG, Stark LA. c-Src dependency of NSAID-induced effects on NF-kB-mediated apoptosis in colorectal cancer cells. Carcinogenesis. 2011;32(7):1069–77.CrossRefPubMed
53.
go back to reference Lemieux E, Cagnol S, Beaudry K, Carrier J, Rivard N. Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene. 2015;34(38):4914–27.CrossRefPubMed Lemieux E, Cagnol S, Beaudry K, Carrier J, Rivard N. Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene. 2015;34(38):4914–27.CrossRefPubMed
54.
go back to reference Shin S, Blenis J. ERK2/Fra1/ZEB pathway induces epithelial-tomesenchymal transition. Cell Cycle. 2010;9(13):2483–4.CrossRefPubMed Shin S, Blenis J. ERK2/Fra1/ZEB pathway induces epithelial-tomesenchymal transition. Cell Cycle. 2010;9(13):2483–4.CrossRefPubMed
55.
go back to reference Li QJ, Yang SH, Maeda Y, Sladek FM, Sharrocks AD, Martins-Green M. MAP kinase phosphorylation-dependent activation of Elk-1 leads to activation of the co-activator p300. EMBO J. 2003;22(2):281–91.CrossRefPubMedPubMedCentral Li QJ, Yang SH, Maeda Y, Sladek FM, Sharrocks AD, Martins-Green M. MAP kinase phosphorylation-dependent activation of Elk-1 leads to activation of the co-activator p300. EMBO J. 2003;22(2):281–91.CrossRefPubMedPubMedCentral
57.
go back to reference Brandl M, Seidler B, Haller F, Adamski J, Schmid RM, Saur D, et al. IKKαcontrols canonical TGFβ–SMAD signaling to regulate genes expressing SNAIL and SLUG during EMT in Panc1 cells. J Cell Sci. 2010;123(Pt 24):4231–9.CrossRefPubMed Brandl M, Seidler B, Haller F, Adamski J, Schmid RM, Saur D, et al. IKKαcontrols canonical TGFβ–SMAD signaling to regulate genes expressing SNAIL and SLUG during EMT in Panc1 cells. J Cell Sci. 2010;123(Pt 24):4231–9.CrossRefPubMed
58.
go back to reference Yotsui T, Yasuda O, Kawamoto H, Higuchi M, Chihara Y, Umemoto E, et al. Aspirin prevents adhesion of T lymphoblasts to vascular smooth muscle cells. FEBS Lett. 2007;581(3):427–32.CrossRefPubMed Yotsui T, Yasuda O, Kawamoto H, Higuchi M, Chihara Y, Umemoto E, et al. Aspirin prevents adhesion of T lymphoblasts to vascular smooth muscle cells. FEBS Lett. 2007;581(3):427–32.CrossRefPubMed
59.
go back to reference Helbig G. Christopherson KW 2nd, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, et al. NFkB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem. 2003;278(24):21631–8.CrossRefPubMed Helbig G. Christopherson KW 2nd, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, et al. NFkB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem. 2003;278(24):21631–8.CrossRefPubMed
60.
go back to reference Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol. 2010;2010:215158.CrossRefPubMedPubMedCentral Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol. 2010;2010:215158.CrossRefPubMedPubMedCentral
61.
go back to reference Chakraborty S, Mazumdar M, Mukherjee S, Bhattacharjee P, Adhikary A, Manna A, et al. Restoration of p53/miR-34a regulatory axis decreases survival advantage and ensures Bax-dependent apoptosis of non-small cell lung carcinoma cells. FEBS Lett. 2014;588(4):549–59.CrossRefPubMed Chakraborty S, Mazumdar M, Mukherjee S, Bhattacharjee P, Adhikary A, Manna A, et al. Restoration of p53/miR-34a regulatory axis decreases survival advantage and ensures Bax-dependent apoptosis of non-small cell lung carcinoma cells. FEBS Lett. 2014;588(4):549–59.CrossRefPubMed
62.
go back to reference Adhikary A, Chakraborty S, Mazumdar M, Ghosh S, Mukherjee S, Manna A, et al. Inhibition of epithelial to mesenchymal transition by E-cadherin Up-regulation via repression of slug transcription and inhibition of E-cadherin degradation dual role of Scaffold/Matrix Attachment Region-binding Protein1 (SMAR1) in breast cancer cells. J Biol Chem. 2014;289(37):25431–44.CrossRefPubMedPubMedCentral Adhikary A, Chakraborty S, Mazumdar M, Ghosh S, Mukherjee S, Manna A, et al. Inhibition of epithelial to mesenchymal transition by E-cadherin Up-regulation via repression of slug transcription and inhibition of E-cadherin degradation dual role of Scaffold/Matrix Attachment Region-binding Protein1 (SMAR1) in breast cancer cells. J Biol Chem. 2014;289(37):25431–44.CrossRefPubMedPubMedCentral
63.
go back to reference Saha B, Adhikary A, Ray P, Saha S, Chakraborty S, Mohanty S, et al. Restoration of tumor suppressor p53 by differentially regulating pro- and anti-p53 networks in HPV-18-infected cervical cancer cells. Oncogene. 2012;31(2):173–86.CrossRefPubMed Saha B, Adhikary A, Ray P, Saha S, Chakraborty S, Mohanty S, et al. Restoration of tumor suppressor p53 by differentially regulating pro- and anti-p53 networks in HPV-18-infected cervical cancer cells. Oncogene. 2012;31(2):173–86.CrossRefPubMed
64.
go back to reference Mukherjee S, Mazumdar M, Chakraborty S, Manna A, Saha S, Khan P, et al. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res Ther. 2014;5(5):116.CrossRefPubMedPubMedCentral Mukherjee S, Mazumdar M, Chakraborty S, Manna A, Saha S, Khan P, et al. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res Ther. 2014;5(5):116.CrossRefPubMedPubMedCentral
65.
go back to reference Lahiry L, Saha B, Chakraborty J, Adhikary A, Mohanty S, Hossain DMS, et al. Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis. 2010;31(2):259–68.CrossRefPubMed Lahiry L, Saha B, Chakraborty J, Adhikary A, Mohanty S, Hossain DMS, et al. Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis. 2010;31(2):259–68.CrossRefPubMed
66.
go back to reference Hossain DMS, Panda AK, Manna A, Mohanty S, Bhattacharjee P, Bhattacharyya S, et al. FoxP3 acts as a cotranscription factor with STAT3 in tumor-induced regulatory T cells. Immunity. 2013;39(6):1057–69.CrossRefPubMed Hossain DMS, Panda AK, Manna A, Mohanty S, Bhattacharjee P, Bhattacharyya S, et al. FoxP3 acts as a cotranscription factor with STAT3 in tumor-induced regulatory T cells. Immunity. 2013;39(6):1057–69.CrossRefPubMed
67.
go back to reference Mazumdar M, Adhikary A, Chakraborty S, Mukherjee S, Manna A, Saha S, et al. Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways. Apoptosis. 2013;18(5):589–604.CrossRefPubMed Mazumdar M, Adhikary A, Chakraborty S, Mukherjee S, Manna A, Saha S, et al. Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways. Apoptosis. 2013;18(5):589–604.CrossRefPubMed
68.
go back to reference Saha S, Mukherjee S, Mazumdar M, Manna A, Khan P, Adhikary A, et al. Mithramycin A sensitizes therapy-resistant breast cancer stem cells toward genotoxic drug doxorubicin. Transl Res. 2015;165(5):558–77.CrossRefPubMed Saha S, Mukherjee S, Mazumdar M, Manna A, Khan P, Adhikary A, et al. Mithramycin A sensitizes therapy-resistant breast cancer stem cells toward genotoxic drug doxorubicin. Transl Res. 2015;165(5):558–77.CrossRefPubMed
69.
go back to reference Chakraborty J, Banerjee S, Ray P. DMS Hossain, S Bhattacharyya, A Adhikary et al. Gain of Cellular Adaptation Due to Prolonged p53 Impairment Leads to Functional Switchover from p53 to p73 during DNA Damage in Acute Myeloid Leukemia Cells. J Biol Chem. 2010;285(43):33104–12.CrossRefPubMedPubMedCentral Chakraborty J, Banerjee S, Ray P. DMS Hossain, S Bhattacharyya, A Adhikary et al. Gain of Cellular Adaptation Due to Prolonged p53 Impairment Leads to Functional Switchover from p53 to p73 during DNA Damage in Acute Myeloid Leukemia Cells. J Biol Chem. 2010;285(43):33104–12.CrossRefPubMedPubMedCentral
70.
go back to reference Chakraborty S, Das K, Saha S, Mazumdar M, Manna A, Chakraborty S, et al. Nuclear matrix protein SMAR1 represses c-Fos-mediated HPV18 E6 transcription through alteration of chromatin histone deacetylation. J Biol Chem. 2014;289(42):29074–85.CrossRefPubMedPubMedCentral Chakraborty S, Das K, Saha S, Mazumdar M, Manna A, Chakraborty S, et al. Nuclear matrix protein SMAR1 represses c-Fos-mediated HPV18 E6 transcription through alteration of chromatin histone deacetylation. J Biol Chem. 2014;289(42):29074–85.CrossRefPubMedPubMedCentral
Metadata
Title
Aspirin inhibits epithelial-to-mesenchymal transition and migration of oncogenic K-ras-expressing non-small cell lung carcinoma cells by down-regulating E-cadherin repressor Slug
Authors
Poulami Khan
Argha Manna
Shilpi Saha
Suchismita Mohanty
Shravanti Mukherjee
Minakshi Mazumdar
Deblina Guha
Tanya Das
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2078-7

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine