Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

CD133+ liver cancer stem cells resist interferon-gamma-induced autophagy

Authors: Jian Li, Jin-Na Chen, Ting-Ting Zeng, Fan He, Shu-Peng Chen, Stephanie Ma, Jiong Bi, Xiao-Feng Zhu, Xin-Yuan Guan

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Hepatocellular carcinoma (HCC) is one of the most fatal malignancies worldwide, and CD133 is a popular cancer stem cell (CSC) marker for HCC. CD133+ CSCs have been reported to resist conventional chemo- and radiotherapy, but little is known about their response to immune surveillance. Interferon-gamma (IFN-γ) is one of key cytokines that the immune system produce to eradicate cancer cells, so we investigated the function of IFN-γ on CD133+ HCC CSCs in this study.

Methods

The response of CD133+ cells to IFN-γ was performed with functional assays (cell proliferation assay and tumor formation in nude mice), flow cytometry, immunofluorescence staining and RNA interference.

Results

We found that IFN-γ inhibited the proliferation of cell lines with low percentage of CD133+ cells (wild-type human cells, BEL7402, QGY7701) but it did not affect the proliferation of cell lines with high percentage of CD133+ cells (wild-type human cells, Huh7, PLC8024) in vivo and in vitro (nude mice). Flow cytometry analysis demonstrated that the percentage of CD133+ cells increased after IFN-γ treatment of low CD133+ cell lines. Furthermore, IFN-γ induced the autophagy of low CD133+ cell lines to decrease proliferation.

Conclusion

CD133+ HCC CSCs resisted IFN-γ-induced autophagy, which might also be a mechanism through which CSCs resist immune eradication.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRef
2.
go back to reference Elena JW, Travis LB, Simonds NI, Ambrosone CB, Ballard-Barbash R, Bhatia S, et al. Leveraging epidemiology and clinical studies of cancer outcomes: recommendations and opportunities for translational research. J Natl Cancer Inst. 2013;105:85–94.PubMedPubMedCentralCrossRef Elena JW, Travis LB, Simonds NI, Ambrosone CB, Ballard-Barbash R, Bhatia S, et al. Leveraging epidemiology and clinical studies of cancer outcomes: recommendations and opportunities for translational research. J Natl Cancer Inst. 2013;105:85–94.PubMedPubMedCentralCrossRef
3.
go back to reference Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.PubMedCrossRef Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.PubMedCrossRef
4.
go back to reference El-Deiry WS. Impact of genetic targets on cancer therapy. Forward. Adv Exp Med Biol. 2013;779:v-vi. El-Deiry WS. Impact of genetic targets on cancer therapy. Forward. Adv Exp Med Biol. 2013;779:v-vi.
5.
go back to reference Masuda S, Izpisua Belmonte JC. The microenvironment and resistance to personalized cancer therapy. Nat Rev Clin Oncol. 2013;10: doi:10.1038/nrclinonc. Masuda S, Izpisua Belmonte JC. The microenvironment and resistance to personalized cancer therapy. Nat Rev Clin Oncol. 2013;10: doi:10.1038/nrclinonc.
6.
go back to reference Glazer PM, Grandis J, Powell SN, Brown JM, Helleday T, et al. Radiation resistance in cancer therapy. Radiat Res. 2013;176:e0016–21.CrossRef Glazer PM, Grandis J, Powell SN, Brown JM, Helleday T, et al. Radiation resistance in cancer therapy. Radiat Res. 2013;176:e0016–21.CrossRef
7.
go back to reference Martinez-Lacaci I, Garcia Morales P, Soto JL, Saceda M. Tumour cells resistance in cancer therapy. Clin Transl Oncol. 2007;9:13–20.PubMedCrossRef Martinez-Lacaci I, Garcia Morales P, Soto JL, Saceda M. Tumour cells resistance in cancer therapy. Clin Transl Oncol. 2007;9:13–20.PubMedCrossRef
8.
go back to reference Printz C. Radiation treatment generates therapy-resistant cancer stem cells from less aggressive breast cancer cells. Cancer. 2012;118:3225. Printz C. Radiation treatment generates therapy-resistant cancer stem cells from less aggressive breast cancer cells. Cancer. 2012;118:3225.
9.
go back to reference Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486:532–6.PubMedPubMedCentral Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486:532–6.PubMedPubMedCentral
10.
go back to reference Heaney A, Buggy DJ. Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis? Br J Anaesth. 2012;109 Suppl 1:i17–28.PubMedCrossRef Heaney A, Buggy DJ. Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis? Br J Anaesth. 2012;109 Suppl 1:i17–28.PubMedCrossRef
11.
go back to reference McCubrey JA, Steelman LS, Abrams SL, Misaghian N, Chappell WH, Basecke J, et al. Targeting the cancer initiating cell: the ultimate target for cancer therapy. Curr Pharm Des. 2012;18:1784–95.PubMedCrossRef McCubrey JA, Steelman LS, Abrams SL, Misaghian N, Chappell WH, Basecke J, et al. Targeting the cancer initiating cell: the ultimate target for cancer therapy. Curr Pharm Des. 2012;18:1784–95.PubMedCrossRef
12.
go back to reference Malik B, Nie D. Cancer stem cells and resistance to chemo and radio therapy. Front Biosci. 2012;4:2142–9.CrossRef Malik B, Nie D. Cancer stem cells and resistance to chemo and radio therapy. Front Biosci. 2012;4:2142–9.CrossRef
13.
14.
15.
go back to reference Milas L, Hittelman WN. Cancer stem cells and tumor response to therapy: current problems and future prospects. Semin Radiat Oncol. 2009;19:96–105.PubMedCrossRef Milas L, Hittelman WN. Cancer stem cells and tumor response to therapy: current problems and future prospects. Semin Radiat Oncol. 2009;19:96–105.PubMedCrossRef
16.
go back to reference Dean M. Cancer stem cells: implications for cancer causation and therapy resistance. Discov Med. 2005;5:278–82.PubMed Dean M. Cancer stem cells: implications for cancer causation and therapy resistance. Discov Med. 2005;5:278–82.PubMed
17.
go back to reference Cetin I, Topcul M. Cancer stem cells in oncology. J Buon. 2003;17:644–8. Cetin I, Topcul M. Cancer stem cells in oncology. J Buon. 2003;17:644–8.
19.
go back to reference Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132:2542–56.PubMedCrossRef Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132:2542–56.PubMedCrossRef
20.
go back to reference Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun. 2006;351:820–4.PubMedCrossRef Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun. 2006;351:820–4.PubMedCrossRef
21.
go back to reference Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 2008;7:1749–58.CrossRef Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 2008;7:1749–58.CrossRef
22.
go back to reference Piao LS, Hur W, Kim TK, Hong SW, Kim SW, Choi JE, et al. CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett. 2012;315:129–37.PubMedCrossRef Piao LS, Hur W, Kim TK, Hong SW, Kim SW, Choi JE, et al. CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett. 2012;315:129–37.PubMedCrossRef
23.
go back to reference Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71.PubMedCrossRef Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71.PubMedCrossRef
24.
go back to reference Nakajima C, Uekusa Y, Iwasaki M, Yamaguchi N, Mukai T, Gao P, et al. A role of interferon-gamma (IFN-gamma) in tumor immunity: T cells with the capacity to reject tumor cells are generated but fail to migrate to tumor sites in IFN-gamma-deficient mice. Cancer Res. 2001;61:3399–405.PubMed Nakajima C, Uekusa Y, Iwasaki M, Yamaguchi N, Mukai T, Gao P, et al. A role of interferon-gamma (IFN-gamma) in tumor immunity: T cells with the capacity to reject tumor cells are generated but fail to migrate to tumor sites in IFN-gamma-deficient mice. Cancer Res. 2001;61:3399–405.PubMed
25.
go back to reference Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11.PubMedCrossRef Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11.PubMedCrossRef
26.
go back to reference Kubota A, Lian RH, Lohwasser S, Salcedo M, Takei F. IFN-gamma production and cytotoxicity of IL-2-activated murine NK cells are differentially regulated by MHC class I molecules. J Immunol. 1999;163:6488–93.PubMed Kubota A, Lian RH, Lohwasser S, Salcedo M, Takei F. IFN-gamma production and cytotoxicity of IL-2-activated murine NK cells are differentially regulated by MHC class I molecules. J Immunol. 1999;163:6488–93.PubMed
27.
go back to reference Moreno M, Molling JW, von Mensdorff-Pouilly S, Verheijen RH, Hooijberg E, Kramer D, et al. IFN-gamma-producing human invariant NKT cells promote tumor-associated antigen-specific cytotoxic T cell responses. J Immunol. 2008;181:2446–54.PubMedCrossRef Moreno M, Molling JW, von Mensdorff-Pouilly S, Verheijen RH, Hooijberg E, Kramer D, et al. IFN-gamma-producing human invariant NKT cells promote tumor-associated antigen-specific cytotoxic T cell responses. J Immunol. 2008;181:2446–54.PubMedCrossRef
28.
go back to reference Qin Z, Blankenstein T. CD4+ T cell--mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity. 2000;2:677–86.CrossRef Qin Z, Blankenstein T. CD4+ T cell--mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity. 2000;2:677–86.CrossRef
29.
go back to reference Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol. 2008;180:3132–9.PubMedCrossRef Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol. 2008;180:3132–9.PubMedCrossRef
30.
go back to reference Hollenbaugh JA, Dutton RW. IFN-gamma regulates donor CD8 T cell expansion, migration, and leads to apoptosis of cells of a solid tumor. J Immunol. 2006;177:3004–11.PubMedCrossRef Hollenbaugh JA, Dutton RW. IFN-gamma regulates donor CD8 T cell expansion, migration, and leads to apoptosis of cells of a solid tumor. J Immunol. 2006;177:3004–11.PubMedCrossRef
31.
go back to reference Propper DJ, Chao D, Braybrooke JP, Bahl P, Thavasu P, Balkwill F, et al. Low-dose IFN-gamma induces tumor MHC expression in metastatic malignant melanoma. Clin Cancer Res. 2003;9:84–92.PubMed Propper DJ, Chao D, Braybrooke JP, Bahl P, Thavasu P, Balkwill F, et al. Low-dose IFN-gamma induces tumor MHC expression in metastatic malignant melanoma. Clin Cancer Res. 2003;9:84–92.PubMed
33.
go back to reference Tekautz TM, Zhu K, Grenet J, Kaushal D, Kidd VJ, Lahti JM. Evaluation of IFN-gamma effects on apoptosis and gene expression in neuroblastoma--preclinical studies. Biochim Biophys Acta. 2006;1763:1000–10.PubMedCrossRef Tekautz TM, Zhu K, Grenet J, Kaushal D, Kidd VJ, Lahti JM. Evaluation of IFN-gamma effects on apoptosis and gene expression in neuroblastoma--preclinical studies. Biochim Biophys Acta. 2006;1763:1000–10.PubMedCrossRef
35.
go back to reference Ma S, Tang KH, Chan YP, Lee TK, Kwan PS, Castilho A, et al. miR-130b promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell. 2010;7:694–707.PubMedCrossRef Ma S, Tang KH, Chan YP, Lee TK, Kwan PS, Castilho A, et al. miR-130b promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell. 2010;7:694–707.PubMedCrossRef
36.
go back to reference Matsushita M, Suzuki NN, Obara K, Fujioka Y, Ohsumi Y, Inagaki F. Structure of Atg5.Atg16, a complex essential for autophagy. J Biol Chem. 2007;282:6763–72.PubMedCrossRef Matsushita M, Suzuki NN, Obara K, Fujioka Y, Ohsumi Y, Inagaki F. Structure of Atg5.Atg16, a complex essential for autophagy. J Biol Chem. 2007;282:6763–72.PubMedCrossRef
37.
go back to reference Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 2006;8:1124–32.PubMedCrossRef Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 2006;8:1124–32.PubMedCrossRef
38.
go back to reference Greiner JW, Guadagni F, Goldstein D, Smalley RV, Borden EC, Simpson JF, et al. Intraperitoneal administration of interferon-gamma to carcinoma patients enhances expression of tumor-associated glycoprotein-72 and carcinoembryonic antigen on malignant ascites cells. J Clin Oncol. 1992;10:735–46.PubMed Greiner JW, Guadagni F, Goldstein D, Smalley RV, Borden EC, Simpson JF, et al. Intraperitoneal administration of interferon-gamma to carcinoma patients enhances expression of tumor-associated glycoprotein-72 and carcinoembryonic antigen on malignant ascites cells. J Clin Oncol. 1992;10:735–46.PubMed
39.
go back to reference Kanda Y, Futatsugi K, Saifuku K, Kuwatsuru R, Akazawa S, Fujiki T, et al. Antitumoral effect of gamma-interferon in patients with hepatocellular carcinoma. Gan No Rinsho. 1988;34:1073–8.PubMed Kanda Y, Futatsugi K, Saifuku K, Kuwatsuru R, Akazawa S, Fujiki T, et al. Antitumoral effect of gamma-interferon in patients with hepatocellular carcinoma. Gan No Rinsho. 1988;34:1073–8.PubMed
40.
go back to reference Wang JH, Wu QD, Bouchier-Hayes D, Redmond HP. Hypoxia upregulates BCL-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells. Cancer. 2002;94:2745–55.PubMedCrossRef Wang JH, Wu QD, Bouchier-Hayes D, Redmond HP. Hypoxia upregulates BCL-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells. Cancer. 2002;94:2745–55.PubMedCrossRef
41.
go back to reference Wang CY, Chiang TH, Chen CL, Tseng PC, Chien SY, Chuang YJ, et al. Autophagy facilitates cytokine-induced ICAM-1 expression. Innate Immun. 2014;20:200–13.PubMedCrossRef Wang CY, Chiang TH, Chen CL, Tseng PC, Chien SY, Chuang YJ, et al. Autophagy facilitates cytokine-induced ICAM-1 expression. Innate Immun. 2014;20:200–13.PubMedCrossRef
Metadata
Title
CD133+ liver cancer stem cells resist interferon-gamma-induced autophagy
Authors
Jian Li
Jin-Na Chen
Ting-Ting Zeng
Fan He
Shu-Peng Chen
Stephanie Ma
Jiong Bi
Xiao-Feng Zhu
Xin-Yuan Guan
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2050-6

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine