Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Dual role of CD44 isoforms in ampullary adenocarcinoma: CD44s predicts poor prognosis in early cancer and CD44ν is an indicator for recurrence in advanced cancer

Authors: Cheng-Lin Wu, Ying-Jui Chao, Ta-Ming Yang, Yi-Ling Chen, Kung-Chao Chang, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Although postoperative adjuvant chemoradiotherapies prevent recurrence for some patients with ampullary cancer, the recurrence rate is as high as 29 % in patients with stage I cancer. In an effort to identify predictors of recurrence in patients with ampullary adenocarcinoma, we investigated the clinical value of assessing standard and variant forms of CD44.

Methods

Immunohistochemistry staining and reverse-transcription polymerase chain reaction (RT-PCR) was used to detect standard and variant forms of CD44 in samples of ampullary adenocarcinoma. The cDNA microarray analysis comparing tumors with or without pancreatic invasion was undertaken and analyzed by Ingenuity Pathway Analysis.

Results

The standard CD44 (CD44s) isoform was detected in 76 of 98 patients with ampullary adenocarcinoma, and the negative or weak expression of CD44s was correlated with pancreatic invasion, lymphovascular invasion, advanced stage and bone metastasis. Moderate to dense expression of CD44s was correlated with shorter overall survival in patients with localized cancer (T1 or T2 disease, P = 0.0268). The patients with advanced cancer (T3 or T4 disease) and moderate or dense CD44s expression had a trend toward better survival. Alternative splicing of CD44 was confirmed using RT-PCR, which revealed that the CD44ν3-10 isoform was only expressed in patients with cancer recurrence. Fold change of CD44ν6-10 was also increased. In addition, networks containing CD44, vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR), transforming growth factor-β (TGF-β), matrix metalloproteinase 2 (MMP2), AKT, extracellular signal-regulated protein kinase 1 and 2 (ERK1/2), p38 MAPK, activated protein 1 (AP1)‚ and CTNNB1 were constructed after comparing microarray data from patients with and without pancreatic invasion.

Conclusions

Whereas CD44s functions as tumor-promoting oncoprotein in early localized ampullary adenocarcinoma, CD44 variants are expressed in advanced cancer and patients with recurrence. Regional invasiveness and distant metastasis of ampullary cancer is controlled by a complex interacting network.
Appendix
Available only for authorised users
Literature
1.
go back to reference O’Connell JB, Maggard MA, Manunga J, Tomlinson JS, Reber HA, Ko CY, et al. Survival after resection of ampullary carcinoma: a national population-based study. Ann Surg Oncol. 2008;15:1820–7.CrossRefPubMed O’Connell JB, Maggard MA, Manunga J, Tomlinson JS, Reber HA, Ko CY, et al. Survival after resection of ampullary carcinoma: a national population-based study. Ann Surg Oncol. 2008;15:1820–7.CrossRefPubMed
2.
go back to reference Albores-Saavedra J, Schwartz AM, Batich K, Henson DE. Cancers of the ampulla of Vater: demographics, morphology, and survival based on 5,625 cases from the seer program. J Surg Oncol. 2009;100:598–605.CrossRefPubMed Albores-Saavedra J, Schwartz AM, Batich K, Henson DE. Cancers of the ampulla of Vater: demographics, morphology, and survival based on 5,625 cases from the seer program. J Surg Oncol. 2009;100:598–605.CrossRefPubMed
3.
go back to reference Hsu HP, Yang TM, Hsieh YH, Shan YS, Lin PW. Predictors for patterns of failure after pancreaticoduodenectomy in ampullary cancer. Ann Surg Oncol. 2007;14:50–60.CrossRefPubMed Hsu HP, Yang TM, Hsieh YH, Shan YS, Lin PW. Predictors for patterns of failure after pancreaticoduodenectomy in ampullary cancer. Ann Surg Oncol. 2007;14:50–60.CrossRefPubMed
4.
go back to reference Carter JT, Grenert JP, Rubenstein L, Stewart L, Way LW. Tumors of the ampulla of Vater: histopathologic classification and predictors of survival. J Am Coll Surg. 2008;207:210–8.CrossRefPubMed Carter JT, Grenert JP, Rubenstein L, Stewart L, Way LW. Tumors of the ampulla of Vater: histopathologic classification and predictors of survival. J Am Coll Surg. 2008;207:210–8.CrossRefPubMed
5.
go back to reference Palta M, Patel P, Broadwater G, Willett C, Pepek J, Tyler D, et al. Carcinoma of the ampulla of Vater: patterns of failure following resection and benefit of chemoradiotherapy. Ann Surg Oncol. 2012;19:1535–40.CrossRefPubMed Palta M, Patel P, Broadwater G, Willett C, Pepek J, Tyler D, et al. Carcinoma of the ampulla of Vater: patterns of failure following resection and benefit of chemoradiotherapy. Ann Surg Oncol. 2012;19:1535–40.CrossRefPubMed
6.
go back to reference Hsu HP, Shan YS, Hsieh YH, Yang TM, Lin PW. Predictors of recurrence after pancreaticoduodenectomy in ampullary cancer: comparison between non-, early and later recurrence. J Formos Med Assoc. 2007;106:432–43.CrossRefPubMed Hsu HP, Shan YS, Hsieh YH, Yang TM, Lin PW. Predictors of recurrence after pancreaticoduodenectomy in ampullary cancer: comparison between non-, early and later recurrence. J Formos Med Assoc. 2007;106:432–43.CrossRefPubMed
7.
go back to reference Lee JC, Lin PW, Lin YJ, Lai J, Yang HB, Lai MD. Analysis of K-ras gene mutations in periampullary cancers, gallbladder cancers and cholangiocarcinomas from paraffin-embedded tissue sections. J Formos Med Assoc. 1995;94:719–23.PubMed Lee JC, Lin PW, Lin YJ, Lai J, Yang HB, Lai MD. Analysis of K-ras gene mutations in periampullary cancers, gallbladder cancers and cholangiocarcinomas from paraffin-embedded tissue sections. J Formos Med Assoc. 1995;94:719–23.PubMed
8.
go back to reference Hsu HP, Shan YS, Jin YT, Lai MD, Lin PW. Loss of E-cadherin and β-catenin is correlated with poor prognosis of ampullary neoplasms. J Surg Oncol. 2010;101:356–62.PubMed Hsu HP, Shan YS, Jin YT, Lai MD, Lin PW. Loss of E-cadherin and β-catenin is correlated with poor prognosis of ampullary neoplasms. J Surg Oncol. 2010;101:356–62.PubMed
9.
go back to reference Hsu HP, Shan YS, Lai MD, Lin PW. Osteopontin-positive infiltrating tumor-associated macrophages in bulky ampullary cancer predict survival. Cancer Biol Ther. 2010;10:144–54.CrossRefPubMed Hsu HP, Shan YS, Lai MD, Lin PW. Osteopontin-positive infiltrating tumor-associated macrophages in bulky ampullary cancer predict survival. Cancer Biol Ther. 2010;10:144–54.CrossRefPubMed
10.
go back to reference Dewi DL, Ishii H, Kano Y, Nishikawa S, Haraguchi N, Sakai D, et al. Cancer stem cell theory in gastrointestinal malignancies: recent progress and upcoming challenges. J Gastroenterol. 2011;46:1145–57.CrossRefPubMed Dewi DL, Ishii H, Kano Y, Nishikawa S, Haraguchi N, Sakai D, et al. Cancer stem cell theory in gastrointestinal malignancies: recent progress and upcoming challenges. J Gastroenterol. 2011;46:1145–57.CrossRefPubMed
12.
go back to reference Baumhoer D, Riener MO, Zlobec I, Tornillo L, Vogetseder A, Kristiansen G, et al. Expression of CD24, P-cadherin and S100A4 in tumors of the ampulla of Vater. Mod Pathol. 2009;22:306–13.CrossRefPubMed Baumhoer D, Riener MO, Zlobec I, Tornillo L, Vogetseder A, Kristiansen G, et al. Expression of CD24, P-cadherin and S100A4 in tumors of the ampulla of Vater. Mod Pathol. 2009;22:306–13.CrossRefPubMed
13.
go back to reference Piscuoglio S, Lehmann FS, Zlobec I, Tornillo L, Dietmaier W, Hartmann A, et al. Effect of EpCAM, CD44, CD133 and CD166 expression on patient survival in tumours of the ampulla of Vater. J Clin Pathol. 2012;65:140–5.CrossRefPubMed Piscuoglio S, Lehmann FS, Zlobec I, Tornillo L, Dietmaier W, Hartmann A, et al. Effect of EpCAM, CD44, CD133 and CD166 expression on patient survival in tumours of the ampulla of Vater. J Clin Pathol. 2012;65:140–5.CrossRefPubMed
14.
go back to reference Cho SH, Park YS, Kim HJ, Kim CH, Lim SW, Huh JW, et al. CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion. Int J Oncol. 2012;41:211–8.PubMed Cho SH, Park YS, Kim HJ, Kim CH, Lim SW, Huh JW, et al. CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion. Int J Oncol. 2012;41:211–8.PubMed
15.
go back to reference Dallas MR, Liu G, Chen WC, Thomas SN, Wirtz D, Huso DL, et al. Divergent roles of CD44 and carcinoembryonic antigen in colon cancer metastasis. FASEB J. 2012;26:2648–56.CrossRefPubMedPubMedCentral Dallas MR, Liu G, Chen WC, Thomas SN, Wirtz D, Huso DL, et al. Divergent roles of CD44 and carcinoembryonic antigen in colon cancer metastasis. FASEB J. 2012;26:2648–56.CrossRefPubMedPubMedCentral
16.
go back to reference Herrlich P, Morrison H, Sleeman J, Orian-Rousseau V, König H, Weg-Remers S, et al. CD44 acts both as a growth- and invasiveness-promoting molecule and as a tumor-suppressing cofactor. Ann N Y Acad Sci. 2000;910:106–20.CrossRefPubMed Herrlich P, Morrison H, Sleeman J, Orian-Rousseau V, König H, Weg-Remers S, et al. CD44 acts both as a growth- and invasiveness-promoting molecule and as a tumor-suppressing cofactor. Ann N Y Acad Sci. 2000;910:106–20.CrossRefPubMed
17.
go back to reference Fox SB, Fawcett J, Jackson DG, Collins I, Gatter KC, Harris AL, et al. Normal human tissue, in addition to some tumors, express multiple different CD44 isoforms. Cancer Res. 1994;54:4539–46.PubMed Fox SB, Fawcett J, Jackson DG, Collins I, Gatter KC, Harris AL, et al. Normal human tissue, in addition to some tumors, express multiple different CD44 isoforms. Cancer Res. 1994;54:4539–46.PubMed
18.
go back to reference Zöller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer. 2011;11:254–67.CrossRefPubMed Zöller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer. 2011;11:254–67.CrossRefPubMed
19.
go back to reference Saito S, Okabe H, Watanabe M, Ishimoto T, Iwatsuki M, Baba Y, et al. CD44v6 expression is related to mesenchymal phenotype and poor prognosis in patients with colorectal cancer. Oncol Rep. 2013;29:1570–8.PubMed Saito S, Okabe H, Watanabe M, Ishimoto T, Iwatsuki M, Baba Y, et al. CD44v6 expression is related to mesenchymal phenotype and poor prognosis in patients with colorectal cancer. Oncol Rep. 2013;29:1570–8.PubMed
20.
go back to reference Omara-Opyene AL, Qiu J, Shah GV, Iczkowski KA. Prostate cancer invasion is influenced more by expression of a CD44 isoform including variant 9 than by Muc18. Lab Invest. 2004;84:894–907.CrossRefPubMed Omara-Opyene AL, Qiu J, Shah GV, Iczkowski KA. Prostate cancer invasion is influenced more by expression of a CD44 isoform including variant 9 than by Muc18. Lab Invest. 2004;84:894–907.CrossRefPubMed
21.
go back to reference Yokoyama Y, Hiyama E, Murakami Y, Matsuura Y, Yokoyama T. Lack of CD44 variant 6 expression in advanced extrahepatic bile duct/ampullary carcinoma. Cancer. 1999;86:1691–9.CrossRefPubMed Yokoyama Y, Hiyama E, Murakami Y, Matsuura Y, Yokoyama T. Lack of CD44 variant 6 expression in advanced extrahepatic bile duct/ampullary carcinoma. Cancer. 1999;86:1691–9.CrossRefPubMed
22.
go back to reference Bosman FT, Carneiro F, Hruban RH, Theise ND, WHO Classification of Tumours of the Digestive System. Invasive adenocarcinoma of the ampullary region. In: Albores Saavedra J, Hruban RH, Klimstra DS, Zamboni G, editors. International agency for research on cancer. Lyon: WHO Publications Centre; 2010. p. 87–91. Bosman FT, Carneiro F, Hruban RH, Theise ND, WHO Classification of Tumours of the Digestive System. Invasive adenocarcinoma of the ampullary region. In: Albores Saavedra J, Hruban RH, Klimstra DS, Zamboni G, editors. International agency for research on cancer. Lyon: WHO Publications Centre; 2010. p. 87–91.
23.
go back to reference Van Weering DH, Baas PD, Bos JL. A PCR-based method for the analysis of human CD44 splice products. PCR Methods Appl. 1993;3:100–6.CrossRefPubMed Van Weering DH, Baas PD, Bos JL. A PCR-based method for the analysis of human CD44 splice products. PCR Methods Appl. 1993;3:100–6.CrossRefPubMed
24.
go back to reference Hsu KH, Tsai HW, Lin PW, Hsu YS, Shan YS, Lu PJ. Clinical implication and mitotic effect of CD44 cleavage in relation to osteopontin/CD44 interaction and dysregulated cell cycle protein in gastrointestinal stromal tumor. Ann Surg Oncol. 2010;17:2199–212.CrossRefPubMed Hsu KH, Tsai HW, Lin PW, Hsu YS, Shan YS, Lu PJ. Clinical implication and mitotic effect of CD44 cleavage in relation to osteopontin/CD44 interaction and dysregulated cell cycle protein in gastrointestinal stromal tumor. Ann Surg Oncol. 2010;17:2199–212.CrossRefPubMed
25.
go back to reference Yang K, Tang Y, Habermehl GK, Iczkowski KA. Stable alterations of CD44 isoform expression in prostate cancer cells decrease invasion and growth and alter ligand binding and chemosensitivity. BMC Cancer. 2010;10(16):e1–e12. Yang K, Tang Y, Habermehl GK, Iczkowski KA. Stable alterations of CD44 isoform expression in prostate cancer cells decrease invasion and growth and alter ligand binding and chemosensitivity. BMC Cancer. 2010;10(16):e1–e12.
26.
go back to reference Bai Y, Liu YJ, Wang H, Xu Y, Stamenkovic I, Yu Q. Inhibition of the hyaluronan-CD44 interaction by merlin contributes to the tumor-suppressor activity of merlin. Oncogene. 2007;26:836–50.CrossRefPubMed Bai Y, Liu YJ, Wang H, Xu Y, Stamenkovic I, Yu Q. Inhibition of the hyaluronan-CD44 interaction by merlin contributes to the tumor-suppressor activity of merlin. Oncogene. 2007;26:836–50.CrossRefPubMed
27.
go back to reference Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev. 2007;3:30–8.CrossRefPubMed Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev. 2007;3:30–8.CrossRefPubMed
28.
go back to reference Descot A, Oskarsson T. The molecular composition of the metastatic niche. Exp Cell Res. 2013;319:1679–86.CrossRefPubMed Descot A, Oskarsson T. The molecular composition of the metastatic niche. Exp Cell Res. 2013;319:1679–86.CrossRefPubMed
29.
go back to reference Li L, Qi L, Liang Z, Song W, Liu Y, Wang Y, et al. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int J Mol Med. 2015. doi:10.3892/ijmm.2015.2222. Li L, Qi L, Liang Z, Song W, Liu Y, Wang Y, et al. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int J Mol Med. 2015. doi:10.​3892/​ijmm.​2015.​2222.
30.
go back to reference Robbins EW, Travanty EA, Yang K, Iczkowski KA. MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells. BMC Cancer. 2008;8:260. e1-e9.CrossRefPubMedPubMedCentral Robbins EW, Travanty EA, Yang K, Iczkowski KA. MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells. BMC Cancer. 2008;8:260. e1-e9.CrossRefPubMedPubMedCentral
31.
go back to reference Yoshida GJ, Saya H. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation. Biochem Biophys Res Commun. 2014;443:622–7.CrossRefPubMed Yoshida GJ, Saya H. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation. Biochem Biophys Res Commun. 2014;443:622–7.CrossRefPubMed
Metadata
Title
Dual role of CD44 isoforms in ampullary adenocarcinoma: CD44s predicts poor prognosis in early cancer and CD44ν is an indicator for recurrence in advanced cancer
Authors
Cheng-Lin Wu
Ying-Jui Chao
Ta-Ming Yang
Yi-Ling Chen
Kung-Chao Chang
Hui-Ping Hsu
Yan-Shen Shan
Ming-Derg Lai
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1924-3

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine