Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Evaluation of an assay for methylated BCAT1 and IKZF1 in plasma for detection of colorectal neoplasia

Authors: Susanne K. Pedersen, Erin L. Symonds, Rohan T. Baker, David H. Murray, Aidan McEvoy, Sascha C. Van Doorn, Marco W. Mundt, Stephen R. Cole, Geetha Gopalsamy, Dileep Mangira, Lawrence C. LaPointe, Evelien Dekker, Graeme P. Young

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Specific genes, such as BCAT1 and IKZF1, are methylated with high frequency in colorectal cancer (CRC) tissue compared to normal colon tissue specimens. Such DNA may leak into blood and be present as cell-free circulating DNA. We have evaluated the accuracy of a novel blood test for these two markers across the spectrum of benign and neoplastic conditions encountered in the colon and rectum.

Methods

Circulating DNA was extracted from plasma obtained from volunteers scheduled for colonoscopy for any reason, or for colonic surgery, at Australian and Dutch hospitals. The extracted DNA was bisulphite converted and analysed by methylation specific real-time quantitative PCR (qPCR). A specimen was deemed positive if one or more qPCR replicates were positive for either methylated BCAT1 or IKZF1 DNA. Sensitivity and specificity for CRC were estimated as the primary outcome measures.

Results

Plasma samples were collected from 2105 enrolled volunteers (mean age 62 years, 54 % male), including 26 additional samples taken after surgical removal of cancers. The two-marker blood test was run successfully on 2127 samples. The test identified 85 of 129 CRC cases (sensitivity of 66 %, 95 % CI: 57–74). For CRC stages I-IV, respective positivity rates were 38 % (95 % CI: 21–58), 69 % (95 % CI: 53–82), 73 % (95 % CI: 56–85) and 94 % (95 % CI: 70–100). A positive trend was observed between positivity rate and degree of invasiveness. The colonic location of cancer did not influence assay positivity rates. Gender, age, smoking and family history were not significant predictors of marker positivity. Twelve methylation-positive cancer cases with paired pre- and post-surgery plasma showed reduction in methylation signal after surgery, with complete disappearance of signal in 10 subjects. Sensitivity for advanced adenoma (n = 338) was 6 % (95 % CI: 4–9). Specificity was 94 % (95 % CI: 92–95) in all 838 non-neoplastic pathology cases and 95 % (95 % CI: 92–97) in those with no colonic pathology detected (n = 450).

Conclusions

The sensitivity for cancer of this two-marker blood test justifies prospective evaluation in a true screening population relative to a proven screening test. Given the high rate of marker disappearance after cancer resection, this blood test might also be useful to monitor tumour recurrence.

Trial registration

Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Mandel JS, Bond JH, Church TR, Snover DC, Bradley GM, Schuman LM, et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota Colon Cancer Control Study. N Engl J Med. 1993;328:1365–71.CrossRefPubMed Mandel JS, Bond JH, Church TR, Snover DC, Bradley GM, Schuman LM, et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota Colon Cancer Control Study. N Engl J Med. 1993;328:1365–71.CrossRefPubMed
3.
go back to reference Kronborg O, Fenger C, Olsen J, Jørgensen OD, Søndergaard O. Randomised study of screening for colorectal cancer with faecal-occult-blood test. Lancet. 1996;348:1467–71.CrossRefPubMed Kronborg O, Fenger C, Olsen J, Jørgensen OD, Søndergaard O. Randomised study of screening for colorectal cancer with faecal-occult-blood test. Lancet. 1996;348:1467–71.CrossRefPubMed
4.
go back to reference Hardcastle JD, Chamberlain JO, Robinson MH, Moss SM, Amar SS, Balfour TW, et al. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet. 1996;348:1472–7.CrossRefPubMed Hardcastle JD, Chamberlain JO, Robinson MH, Moss SM, Amar SS, Balfour TW, et al. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet. 1996;348:1472–7.CrossRefPubMed
5.
go back to reference Mandel JS, Church TR, Church BJH, Bond EF, et al. The Effect of Fecal Occult-Blood Screening on the Incidence of Colorectal Cancer. N Engl J Med. 2000;343:1603–7.CrossRefPubMed Mandel JS, Church TR, Church BJH, Bond EF, et al. The Effect of Fecal Occult-Blood Screening on the Incidence of Colorectal Cancer. N Engl J Med. 2000;343:1603–7.CrossRefPubMed
6.
go back to reference Holme Ø, Løberg M, Kalager M, Bretthauer M, Hernán MA, Aas E, et al. Effect of Flexible Sigmoidoscopy Screening on Colorectal Cancer Incidence and Mortality: A Randomized Clinical Trial. JAMA. 2014;312:606–15.CrossRefPubMedPubMedCentral Holme Ø, Løberg M, Kalager M, Bretthauer M, Hernán MA, Aas E, et al. Effect of Flexible Sigmoidoscopy Screening on Colorectal Cancer Incidence and Mortality: A Randomized Clinical Trial. JAMA. 2014;312:606–15.CrossRefPubMedPubMedCentral
7.
go back to reference Australian Institute of Health, Welfare. National Bowel Cancer Screening Program monitoring report 2012-2013. Cancer Series. 2014;81:1–142. Australian Institute of Health, Welfare. National Bowel Cancer Screening Program monitoring report 2012-2013. Cancer Series. 2014;81:1–142.
8.
go back to reference Adler A, Geiger S, Keil A, Bias H, Schatz P, deVos T, et al. Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany. BMC Gastroenterol. 2014;14:1–8.CrossRef Adler A, Geiger S, Keil A, Bias H, Schatz P, deVos T, et al. Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany. BMC Gastroenterol. 2014;14:1–8.CrossRef
9.
go back to reference Osborne JM, Wilson C, Moore V, Gregory T, Flight I, Young GP. Sample preference for colorectal cancer screening tests: Blood or stool? OJPM. 2012;2:326–31.CrossRef Osborne JM, Wilson C, Moore V, Gregory T, Flight I, Young GP. Sample preference for colorectal cancer screening tests: Blood or stool? OJPM. 2012;2:326–31.CrossRef
10.
go back to reference Kibriya MG, Raza M, Jasmine F, Roy S, Paul-Brutus R, Rahaman R, et al. A genome-wide DNA methylation study in colorectal carcinoma. BMC Med Genomics. 2011;4:50.CrossRefPubMedPubMedCentral Kibriya MG, Raza M, Jasmine F, Roy S, Paul-Brutus R, Rahaman R, et al. A genome-wide DNA methylation study in colorectal carcinoma. BMC Med Genomics. 2011;4:50.CrossRefPubMedPubMedCentral
11.
go back to reference Øster B, Thorsen K, Lamy P, Wojdacz TK, Hansen LL, Birkenkamp-Demtröder K, et al. Identification and validation of highly frequent CpG island hypermethylation in colorectal adenomas and carcinomas. Int J Cancer. 2011;129:2855–66.CrossRefPubMed Øster B, Thorsen K, Lamy P, Wojdacz TK, Hansen LL, Birkenkamp-Demtröder K, et al. Identification and validation of highly frequent CpG island hypermethylation in colorectal adenomas and carcinomas. Int J Cancer. 2011;129:2855–66.CrossRefPubMed
12.
go back to reference deVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, et al. Circulating Methylated SEPT9 DNA in Plasma Is a Biomarker for Colorectal Cancer. Clin Chem. 2009;55:1337–46.CrossRefPubMed deVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, et al. Circulating Methylated SEPT9 DNA in Plasma Is a Biomarker for Colorectal Cancer. Clin Chem. 2009;55:1337–46.CrossRefPubMed
13.
go back to reference Church TR, Wandell M, Lofton-Day C, Mongin SJ, Burger M, Payne SR, et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 2014;63:317–25.CrossRefPubMed Church TR, Wandell M, Lofton-Day C, Mongin SJ, Burger M, Payne SR, et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 2014;63:317–25.CrossRefPubMed
14.
go back to reference Mitchell SM, Ross JP, Drew HR, Ho T, Brown GS, Saunders NF, et al. A panel of genes methylated with high frequency in colorectal cancer. BMC Cancer. 2014;14:54.CrossRefPubMedPubMedCentral Mitchell SM, Ross JP, Drew HR, Ho T, Brown GS, Saunders NF, et al. A panel of genes methylated with high frequency in colorectal cancer. BMC Cancer. 2014;14:54.CrossRefPubMedPubMedCentral
15.
go back to reference Pedersen SK, Baker RT, McEvoy A, Murray DH, Thomas M, Molloy PL, et al. A two-gene blood test for methylated DNA sensitive for colorectal cancer. PLoS One. 2015;10:e0125041.CrossRefPubMedPubMedCentral Pedersen SK, Baker RT, McEvoy A, Murray DH, Thomas M, Molloy PL, et al. A two-gene blood test for methylated DNA sensitive for colorectal cancer. PLoS One. 2015;10:e0125041.CrossRefPubMedPubMedCentral
16.
go back to reference Allison JE, Fraser CG, Halloran SP, Young GP. Population screening for colorectal Cancer means getting FIT: The Past, Present, and Future of colorectal cancer screening using the Fecal Immunochemical Test for Hemoglobin (FIT). Gut and Liver. 2014;8:117–30.CrossRefPubMedPubMedCentral Allison JE, Fraser CG, Halloran SP, Young GP. Population screening for colorectal Cancer means getting FIT: The Past, Present, and Future of colorectal cancer screening using the Fecal Immunochemical Test for Hemoglobin (FIT). Gut and Liver. 2014;8:117–30.CrossRefPubMedPubMedCentral
17.
go back to reference Lord SJ, Irwig L, Simes RJ. When Is Measuring Sensitivity and Specificity Sufficient To Evaluate a Diagnostic Test, and When Do We Need Randomized Trials? Ann Intern Med. 2006;144:850–5.CrossRefPubMed Lord SJ, Irwig L, Simes RJ. When Is Measuring Sensitivity and Specificity Sufficient To Evaluate a Diagnostic Test, and When Do We Need Randomized Trials? Ann Intern Med. 2006;144:850–5.CrossRefPubMed
18.
go back to reference Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann of Surg Oncol. 2010;17:1471–4.CrossRef Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann of Surg Oncol. 2010;17:1471–4.CrossRef
19.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRefPubMed Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRefPubMed
20.
go back to reference Whitlock EP, Lin JS, Liles E, Beil TL, Fu R. Screening for colorectal cancer: a targeted, updated systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 2008;149:638–58.CrossRefPubMed Whitlock EP, Lin JS, Liles E, Beil TL, Fu R. Screening for colorectal cancer: a targeted, updated systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 2008;149:638–58.CrossRefPubMed
21.
go back to reference Lansdorp-Vogelaar I, van Ballegooijen M, Boer R, Zauber A, Habbema JDF. A novel hypothesis on the sensitivity of the fecal occult blood test: Results of a joint analysis of 3 randomized controlled trials. Cancer. 2009;115:2410–9.CrossRefPubMedPubMedCentral Lansdorp-Vogelaar I, van Ballegooijen M, Boer R, Zauber A, Habbema JDF. A novel hypothesis on the sensitivity of the fecal occult blood test: Results of a joint analysis of 3 randomized controlled trials. Cancer. 2009;115:2410–9.CrossRefPubMedPubMedCentral
22.
go back to reference Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, Lidgard GP, et al. Multitarget Stool DNA Testing for Colorectal-Cancer Screening. N Engl J Med. 2014;370:1287–97.CrossRefPubMed Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, Lidgard GP, et al. Multitarget Stool DNA Testing for Colorectal-Cancer Screening. N Engl J Med. 2014;370:1287–97.CrossRefPubMed
23.
go back to reference Lane JM, Chow E, Young GP, Good N, Smith A, Bull J, et al. Interval fecal immunochemical testing in a colonoscopic surveillance program speeds detection of colorectal neoplasia. Gastroenterology. 2010;139:1918–26.CrossRefPubMed Lane JM, Chow E, Young GP, Good N, Smith A, Bull J, et al. Interval fecal immunochemical testing in a colonoscopic surveillance program speeds detection of colorectal neoplasia. Gastroenterology. 2010;139:1918–26.CrossRefPubMed
24.
go back to reference Lofton-Day C, Model F, deVos T, Tetzner R, Distler J, Schuster M, et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008;54:414–23.CrossRefPubMed Lofton-Day C, Model F, deVos T, Tetzner R, Distler J, Schuster M, et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008;54:414–23.CrossRefPubMed
25.
go back to reference Grützmann R, Molnar B, Pilarsky C, Habermann JK, Schlag PM, Saeger HD, et al. Sensitive Detection of Colorectal Cancer in Peripheral Blood by Septin 9 DNA Methylation Assay. PLoS One. 2008;3:e3759–68.CrossRefPubMedPubMedCentral Grützmann R, Molnar B, Pilarsky C, Habermann JK, Schlag PM, Saeger HD, et al. Sensitive Detection of Colorectal Cancer in Peripheral Blood by Septin 9 DNA Methylation Assay. PLoS One. 2008;3:e3759–68.CrossRefPubMedPubMedCentral
26.
go back to reference Warren JD, Xiong W, Bunker AM, Vaughn CP, Furtado LV, Roberts WL, et al. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 2011;9:133.CrossRefPubMedPubMedCentral Warren JD, Xiong W, Bunker AM, Vaughn CP, Furtado LV, Roberts WL, et al. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 2011;9:133.CrossRefPubMedPubMedCentral
28.
go back to reference Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.CrossRefPubMedPubMedCentral Newman AM, Bratman SV, To J, Wynne JF, Eclov NCW, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.CrossRefPubMedPubMedCentral
29.
go back to reference Young GP, Symonds EL, Allison JE, Cole SR, Fraser CG, Halloran SP, et al. Advances in Fecal Occult Blood Tests: The FIT Revolution. Dig Dis Sci. 2015;60:609–22.CrossRefPubMed Young GP, Symonds EL, Allison JE, Cole SR, Fraser CG, Halloran SP, et al. Advances in Fecal Occult Blood Tests: The FIT Revolution. Dig Dis Sci. 2015;60:609–22.CrossRefPubMed
30.
go back to reference Zhang Z, Xu Z, Wang X, Wang H, Yao Z, Mu Y, et al. Ectopic Ikaros expression positively correlates with lung cancer progression. Anat Rec (Hoboken). 2013;296:907–13.CrossRef Zhang Z, Xu Z, Wang X, Wang H, Yao Z, Mu Y, et al. Ectopic Ikaros expression positively correlates with lung cancer progression. Anat Rec (Hoboken). 2013;296:907–13.CrossRef
31.
go back to reference Tonjes M, Barbus S, Park YJ, Wang W, Schlotter M, Lindroth AM, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med. 2013;19:901–8.CrossRefPubMedPubMedCentral Tonjes M, Barbus S, Park YJ, Wang W, Schlotter M, Lindroth AM, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med. 2013;19:901–8.CrossRefPubMedPubMedCentral
32.
go back to reference Vincent A, Omura N, Hong SM, Jaffe A, Eshleman J, Goggins M. Genome-Wide Analysis of Promoter Methylation Associated with Gene Expression Profile in Pancreatic Adenocarcinoma. Clin Cancer Res. 2011;17:4341–54.CrossRefPubMedPubMedCentral Vincent A, Omura N, Hong SM, Jaffe A, Eshleman J, Goggins M. Genome-Wide Analysis of Promoter Methylation Associated with Gene Expression Profile in Pancreatic Adenocarcinoma. Clin Cancer Res. 2011;17:4341–54.CrossRefPubMedPubMedCentral
33.
go back to reference Yoshikawa R, Yanagi H, Shen C-S, Fujiwara Y, Noda M, Yagyu T, et al. ECA39 is a novel distant metastasis-related biomarker in colorectal cancer. World J Gastroenterol. 2006;12:5884–9.CrossRefPubMedPubMedCentral Yoshikawa R, Yanagi H, Shen C-S, Fujiwara Y, Noda M, Yagyu T, et al. ECA39 is a novel distant metastasis-related biomarker in colorectal cancer. World J Gastroenterol. 2006;12:5884–9.CrossRefPubMedPubMedCentral
34.
go back to reference Javierre BM, Rodriguez-Ubreva J, Al-Shahrour F, Corominas M, Grana O, Ciudad L, et al. Long-Range Epigenetic Silencing Associates with Deregulation of Ikaros Targets in Colorectal Cancer Cells. Mol Cancer Res. 2011;9:1139–51.CrossRefPubMed Javierre BM, Rodriguez-Ubreva J, Al-Shahrour F, Corominas M, Grana O, Ciudad L, et al. Long-Range Epigenetic Silencing Associates with Deregulation of Ikaros Targets in Colorectal Cancer Cells. Mol Cancer Res. 2011;9:1139–51.CrossRefPubMed
35.
go back to reference Iacobucci I, Storlazzi CT, Cilloni D, Lonetti A, Ottaviani E, Soverini S, et al. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood. 2009;114:2159–67.CrossRefPubMed Iacobucci I, Storlazzi CT, Cilloni D, Lonetti A, Ottaviani E, Soverini S, et al. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood. 2009;114:2159–67.CrossRefPubMed
36.
go back to reference Malinge S, Thiollier C, Chlon TM, Dore LC, Diebold L, Bluteau O, et al. Ikaros inhibits megakaryopoiesis through functional interaction with GATA-1 and NOTCH signaling. Blood. 2013;121:2440–51.CrossRefPubMedPubMedCentral Malinge S, Thiollier C, Chlon TM, Dore LC, Diebold L, Bluteau O, et al. Ikaros inhibits megakaryopoiesis through functional interaction with GATA-1 and NOTCH signaling. Blood. 2013;121:2440–51.CrossRefPubMedPubMedCentral
37.
go back to reference Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L, van Es JH, Zimber-Strobl U, et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO. 2008;9:377–83.CrossRef Riccio O, van Gijn ME, Bezdek AC, Pellegrinet L, van Es JH, Zimber-Strobl U, et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO. 2008;9:377–83.CrossRef
38.
go back to reference Noah TK, Shroyer NF. Notch in the Intestine: Regulation of Homeostasis and Pathogenesis. Annu Rev of Physiol. 2013;75:263–88.CrossRef Noah TK, Shroyer NF. Notch in the Intestine: Regulation of Homeostasis and Pathogenesis. Annu Rev of Physiol. 2013;75:263–88.CrossRef
39.
go back to reference Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90.CrossRefPubMed Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90.CrossRefPubMed
40.
go back to reference Tham C, Chew M, Soong R, Lim J, Ang M, Tang C, et al. Postoperative serum methylation levels of TAC1 and SEPT9 are independent predictors of recurrence and survival of patients with colorectal cancer. Cancer. 2014;120:3131–41.CrossRefPubMed Tham C, Chew M, Soong R, Lim J, Ang M, Tang C, et al. Postoperative serum methylation levels of TAC1 and SEPT9 are independent predictors of recurrence and survival of patients with colorectal cancer. Cancer. 2014;120:3131–41.CrossRefPubMed
Metadata
Title
Evaluation of an assay for methylated BCAT1 and IKZF1 in plasma for detection of colorectal neoplasia
Authors
Susanne K. Pedersen
Erin L. Symonds
Rohan T. Baker
David H. Murray
Aidan McEvoy
Sascha C. Van Doorn
Marco W. Mundt
Stephen R. Cole
Geetha Gopalsamy
Dileep Mangira
Lawrence C. LaPointe
Evelien Dekker
Graeme P. Young
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1674-2

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine