Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

In vitro engineering of human 3D chondrosarcoma: a preclinical model relevant for investigations of radiation quality impact

Authors: Dounia Houria Hamdi, Sofia Barbieri, François Chevalier, Jean-Emmanuel Groetz, Florence Legendre, Magali Demoor, Philippe Galera, Jean-Louis Lefaix, Yannick Saintigny

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

The benefit of better ballistic and higher efficiency of carbon ions for cancer treatment (hadron-therapy) is asserted since decades, especially for unresectable or resistant tumors like sarcomas. However, hadron-therapy with carbon ions stays underused and raises some concerns about potential side effects for patients. Chondrosarcoma is a cartilaginous tumor, chemo- and radiation-resistant, that lacks reference models for basic and pre-clinical studies in radiation-biology. Most studies about cellular effects of ionizing radiation, including hadrons, were performed under growth conditions dramatically different from human homeostasis. Tridimensional in vitro models are a fair alternative to animal models to approach tissue and tumors microenvironment.

Methods

By using a collagen matrix, standardized culture conditions, physiological oxygen tension and a well defined chondrosarcoma cell line, we developed a pertinent in vitro 3D model for hadron-biology studies. Low- and high-Linear Energy Transfer (LET) ionizing radiations from GANIL facilities of ~1 keV/μm and 103 ± 4 keV/μm were used respectively, at 2 Gy single dose. The impact of radiation quality on chondrosarcoma cells cultivated in 3D was analyzed on cell death, cell proliferation and DNA repair.

Results

A fair distribution of chondrosarcoma cells was observed in the whole 3D scaffold. Moreover, LET distribution in depth, for ions, was calculated and found acceptable for radiation-biology studies using this kind of scaffold. No difference in cell toxicity was observed between low- and high-LET radiations but a higher rate of proliferation was displayed following high-LET irradiation. Furthermore, 3D models presented a higher and longer induction of H2AX phosphorylation after 2 Gy of high-LET compared to low-LET radiations.

Conclusions

The presented results show the feasibility and usefulness of our 3D chondrosarcoma model in the study of the impact of radiation quality on cell fate. The observed changes in our tissue-like model after ionizing radiation exposure may explain some discrepancies between radiation-biology studies and clinical data.
Appendix
Available only for authorised users
Literature
3.
go back to reference Loeffler JS, Durante M. Charged particle therapy--optimization, challenges and future directions. Nat Rev Clin Oncol. 2013;10:411–24.CrossRefPubMed Loeffler JS, Durante M. Charged particle therapy--optimization, challenges and future directions. Nat Rev Clin Oncol. 2013;10:411–24.CrossRefPubMed
4.
go back to reference Gelderblom H, Hogendoorn PCW, Dijkstra SD, van Rijswijk CS, Krol AD, Taminiau AHM, et al. The clinical approach towards chondrosarcoma. The Oncologist. 2008;13:320–9.CrossRefPubMed Gelderblom H, Hogendoorn PCW, Dijkstra SD, van Rijswijk CS, Krol AD, Taminiau AHM, et al. The clinical approach towards chondrosarcoma. The Oncologist. 2008;13:320–9.CrossRefPubMed
5.
go back to reference Jensen AD, Münter MW, Debus J. Review of clinical experience with ion beam radiotherapy. Br J Radiol. 2011;84(Spec No 1):S35–47.CrossRefPubMed Jensen AD, Münter MW, Debus J. Review of clinical experience with ion beam radiotherapy. Br J Radiol. 2011;84(Spec No 1):S35–47.CrossRefPubMed
6.
go back to reference Holliday EB, Frank SJ. Proton radiation therapy for head and neck cancer: a review of the clinical experience to date. Int J Radiat Oncol Biol Phys. 2014;89:292–302.CrossRefPubMed Holliday EB, Frank SJ. Proton radiation therapy for head and neck cancer: a review of the clinical experience to date. Int J Radiat Oncol Biol Phys. 2014;89:292–302.CrossRefPubMed
7.
go back to reference Clark JCM, Dass CR, Choong PFM. Development of chondrosarcoma animal models for assessment of adjuvant therapy. ANZ J Surg. 2009;79:327–36.CrossRefPubMed Clark JCM, Dass CR, Choong PFM. Development of chondrosarcoma animal models for assessment of adjuvant therapy. ANZ J Surg. 2009;79:327–36.CrossRefPubMed
8.
go back to reference Clark JC, Akiyama T, Dass CR, Choong PF. New clinically relevant, orthotopic mouse models of human chondrosarcoma with spontaneous metastasis. Cancer Cell Int. 2010;10:20.CrossRefPubMedPubMedCentral Clark JC, Akiyama T, Dass CR, Choong PF. New clinically relevant, orthotopic mouse models of human chondrosarcoma with spontaneous metastasis. Cancer Cell Int. 2010;10:20.CrossRefPubMedPubMedCentral
9.
go back to reference Monderer D, Luseau A, Bellec A, David E, Ponsolle S, Saiagh S, et al. New chondrosarcoma cell lines and mouse models to study the link between chondrogenesis and chemoresistance. Lab Investig J Tech Methods Pathol. 2013;93:1100–14.CrossRef Monderer D, Luseau A, Bellec A, David E, Ponsolle S, Saiagh S, et al. New chondrosarcoma cell lines and mouse models to study the link between chondrogenesis and chemoresistance. Lab Investig J Tech Methods Pathol. 2013;93:1100–14.CrossRef
10.
go back to reference Van Oosterwijk JG, Plass JRM, Meijer D, Que I, Karperien M, Bovée JVMG. An orthotopic mouse model for chondrosarcoma of bone provides an in vivo tool for drug testing. Virchows Arch Int J Pathol. 2014;466:101–9.CrossRef Van Oosterwijk JG, Plass JRM, Meijer D, Que I, Karperien M, Bovée JVMG. An orthotopic mouse model for chondrosarcoma of bone provides an in vivo tool for drug testing. Virchows Arch Int J Pathol. 2014;466:101–9.CrossRef
11.
go back to reference Storch K, Eke I, Borgmann K, Krause M, Richter C, Becker K, et al. Three-dimensional cell growth confers radioresistance by chromatin density modification. Cancer Res. 2010;70:3925–34.CrossRefPubMed Storch K, Eke I, Borgmann K, Krause M, Richter C, Becker K, et al. Three-dimensional cell growth confers radioresistance by chromatin density modification. Cancer Res. 2010;70:3925–34.CrossRefPubMed
12.
13.
go back to reference Freyria A-M, Ronzière M-C, Cortial D, Galois L, Hartmann D, Herbage D, et al. Comparative phenotypic analysis of articular chondrocytes cultured within type I or type II collagen scaffolds. Tissue Eng Part A. 2009;15:1233–45.CrossRefPubMed Freyria A-M, Ronzière M-C, Cortial D, Galois L, Hartmann D, Herbage D, et al. Comparative phenotypic analysis of articular chondrocytes cultured within type I or type II collagen scaffolds. Tissue Eng Part A. 2009;15:1233–45.CrossRefPubMed
14.
go back to reference Demoor M, Ollitrault D, Gomez-Leduc T, Bouyoucef M, Hervieu M, Fabre H, et al. Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta. 1840;2014:2414–40. Demoor M, Ollitrault D, Gomez-Leduc T, Bouyoucef M, Hervieu M, Fabre H, et al. Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta. 1840;2014:2414–40.
15.
go back to reference Legendre F, Ollitrault D, Hervieu M, Baugé C, Maneix L, Goux D, et al. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia. Tissue Eng Part C Methods. 2013;19:550–67.CrossRefPubMed Legendre F, Ollitrault D, Hervieu M, Baugé C, Maneix L, Goux D, et al. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia. Tissue Eng Part C Methods. 2013;19:550–67.CrossRefPubMed
16.
go back to reference Saintigny Y, Cruet-Hennequart S, Hamdi DH, Chevalier F, Lefaix J-L. Impact of therapeutic irradiation on healthy articular cartilage. Radiat Res. 2015;183:135–46.CrossRefPubMed Saintigny Y, Cruet-Hennequart S, Hamdi DH, Chevalier F, Lefaix J-L. Impact of therapeutic irradiation on healthy articular cartilage. Radiat Res. 2015;183:135–46.CrossRefPubMed
17.
go back to reference Gibson JS, Milner PI, White R, Fairfax TPA, Wilkins RJ. Oxygen and reactive oxygen species in articular cartilage: modulators of ionic homeostasis. Pflüg Arch Eur J Physiol. 2008;455:563–73.CrossRef Gibson JS, Milner PI, White R, Fairfax TPA, Wilkins RJ. Oxygen and reactive oxygen species in articular cartilage: modulators of ionic homeostasis. Pflüg Arch Eur J Physiol. 2008;455:563–73.CrossRef
18.
go back to reference Claus S, Mayer N, Aubert-Foucher E, Chajra H, Perrier-Groult E, Lafont J, et al. Cartilage-characteristic matrix reconstruction by sequential addition of soluble factors during expansion of human articular chondrocytes and their cultivation in collagen sponges. Tissue Eng Part C-Methods. 2012;18:104–12.CrossRefPubMed Claus S, Mayer N, Aubert-Foucher E, Chajra H, Perrier-Groult E, Lafont J, et al. Cartilage-characteristic matrix reconstruction by sequential addition of soluble factors during expansion of human articular chondrocytes and their cultivation in collagen sponges. Tissue Eng Part C-Methods. 2012;18:104–12.CrossRefPubMed
19.
go back to reference Ando K, Kase Y. Biological characteristics of carbon-ion therapy. Int J Radiat Biol. 2009;85:715–28.CrossRefPubMed Ando K, Kase Y. Biological characteristics of carbon-ion therapy. Int J Radiat Biol. 2009;85:715–28.CrossRefPubMed
20.
go back to reference Chajra H, Rousseau CF, Cortial D, Ronzière MC, Herbage D, Mallein-Gerin F, et al. Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects. Biomed Mater Eng. 2008;18(1 Suppl):S33–45.PubMed Chajra H, Rousseau CF, Cortial D, Ronzière MC, Herbage D, Mallein-Gerin F, et al. Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects. Biomed Mater Eng. 2008;18(1 Suppl):S33–45.PubMed
21.
go back to reference Ma CM, Coffey CW, DeWerd LA, Liu C, Nath R, Seltzer SM, et al. AAPM protocol for 40–300 kV x-ray beam dosimetry in radiotherapy and radiobiology. Med Phys. 2001;28:868–93.CrossRefPubMed Ma CM, Coffey CW, DeWerd LA, Liu C, Nath R, Seltzer SM, et al. AAPM protocol for 40–300 kV x-ray beam dosimetry in radiotherapy and radiobiology. Med Phys. 2001;28:868–93.CrossRefPubMed
22.
go back to reference Hellweg CE, Baumstark-Khan C, Schmitz C, Lau P, Meier MM, Testard I, et al. Carbon-ion-induced activation of the NF-κB pathway. Radiat Res. 2011;175:424–31.CrossRefPubMed Hellweg CE, Baumstark-Khan C, Schmitz C, Lau P, Meier MM, Testard I, et al. Carbon-ion-induced activation of the NF-κB pathway. Radiat Res. 2011;175:424–31.CrossRefPubMed
23.
go back to reference Suetens A, Moreels M, Quintens R, Chiriotti S, Tabury K, Michaux A, et al. Carbon ion irradiation of the human prostate cancer cell line PC3: a whole genome microarray study. Int J Oncol. 2014;44:1056–72.PubMedPubMedCentral Suetens A, Moreels M, Quintens R, Chiriotti S, Tabury K, Michaux A, et al. Carbon ion irradiation of the human prostate cancer cell line PC3: a whole genome microarray study. Int J Oncol. 2014;44:1056–72.PubMedPubMedCentral
24.
go back to reference Battistoni G, Cerutti F, Fasso A, Ferrari A, Muraro S, Ranft J, et al. The FLUKA code: description and benchmarking. In: Albrow M, Raja R, editors. Hadronic Shower Simulation Workshop, vol. 896. Melville: Amer Inst Physics; 2007. p. 31–49. Battistoni G, Cerutti F, Fasso A, Ferrari A, Muraro S, Ranft J, et al. The FLUKA code: description and benchmarking. In: Albrow M, Raja R, editors. Hadronic Shower Simulation Workshop, vol. 896. Melville: Amer Inst Physics; 2007. p. 31–49.
25.
go back to reference Ferrari A, Sala PR, Fasso A, Ranft J. FLUKA: A Multi-Particle Transport Code. Geneva: CERN; 2005. p. 405.CrossRef Ferrari A, Sala PR, Fasso A, Ranft J. FLUKA: A Multi-Particle Transport Code. Geneva: CERN; 2005. p. 405.CrossRef
26.
go back to reference Sato T, Niita K, Matsuda N, Hashimoto S, Iwamoto Y, Noda S, et al. Particle and Heavy Ion Transport code System, PHITS, version 2.52. J Nucl Sci Technol. 2013;50:913–23.CrossRef Sato T, Niita K, Matsuda N, Hashimoto S, Iwamoto Y, Noda S, et al. Particle and Heavy Ion Transport code System, PHITS, version 2.52. J Nucl Sci Technol. 2013;50:913–23.CrossRef
27.
go back to reference Gonon G, Groetz JE, de Toledo SM, Howell RW, Fromm M, Azzam EI. Nontargeted Stressful Effects in Normal Human Fibroblast Cultures Exposed to Low Fluences of High Charge, High Energy (HZE) Particles: Kinetics of Biologic Responses and Significance of Secondary Radiations. Radiat Res. 2013;179:444–57.CrossRefPubMedPubMedCentral Gonon G, Groetz JE, de Toledo SM, Howell RW, Fromm M, Azzam EI. Nontargeted Stressful Effects in Normal Human Fibroblast Cultures Exposed to Low Fluences of High Charge, High Energy (HZE) Particles: Kinetics of Biologic Responses and Significance of Secondary Radiations. Radiat Res. 2013;179:444–57.CrossRefPubMedPubMedCentral
29.
go back to reference Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMed Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMed
30.
go back to reference Kim DW, Seo SW, Cho SK, Chang SS, Lee HW, Lee SE, et al. Targeting of cell survival genes using small interfering RNAs (siRNAs) enhances radiosensitivity of grade II chondrosarcoma cells. J Orthop Res. 2007;25:820–8.CrossRefPubMed Kim DW, Seo SW, Cho SK, Chang SS, Lee HW, Lee SE, et al. Targeting of cell survival genes using small interfering RNAs (siRNAs) enhances radiosensitivity of grade II chondrosarcoma cells. J Orthop Res. 2007;25:820–8.CrossRefPubMed
31.
go back to reference Van Oosterwijk JG, de Jong D, van Ruler M, Hogendoorn PCW, Dijkstra PDS, van Rijswijk CSP, et al. Three new chondrosarcoma cell lines: one grade III conventional central chondrosarcoma and two dedifferentiated chondrosarcomas of bone. BMC Cancer. 2012;12:10.CrossRef Van Oosterwijk JG, de Jong D, van Ruler M, Hogendoorn PCW, Dijkstra PDS, van Rijswijk CSP, et al. Three new chondrosarcoma cell lines: one grade III conventional central chondrosarcoma and two dedifferentiated chondrosarcomas of bone. BMC Cancer. 2012;12:10.CrossRef
32.
go back to reference Nawa G, Ueda T, Mori S, Yoshikawa H, Fukuda H, Ishiguro S, et al. Prognostic significance of Ki67 (MIB1) proliferation index and p53 over-expression in chondrosarcomas. Int J Cancer J Int Cancer. 1996;69:86–91.CrossRef Nawa G, Ueda T, Mori S, Yoshikawa H, Fukuda H, Ishiguro S, et al. Prognostic significance of Ki67 (MIB1) proliferation index and p53 over-expression in chondrosarcomas. Int J Cancer J Int Cancer. 1996;69:86–91.CrossRef
33.
go back to reference Perez J, Decouvelaere AV, Pointecouteau T, Pissaloux D, Michot JP, Besse A, et al. Inhibition of chondrosarcoma growth by mTOR inhibitor in an in vivo syngeneic rat model. PloS One. 2012;7:e32458.CrossRefPubMedPubMedCentral Perez J, Decouvelaere AV, Pointecouteau T, Pissaloux D, Michot JP, Besse A, et al. Inhibition of chondrosarcoma growth by mTOR inhibitor in an in vivo syngeneic rat model. PloS One. 2012;7:e32458.CrossRefPubMedPubMedCentral
34.
go back to reference Spadinger I, Palcic B. The relative biological effectiveness of 60Co gamma-rays, 55 kVp X-rays, 250 kVp X-rays, and 11 MeV electrons at low doses. Int J Radiat Biol. 1992;61:345–53.CrossRefPubMed Spadinger I, Palcic B. The relative biological effectiveness of 60Co gamma-rays, 55 kVp X-rays, 250 kVp X-rays, and 11 MeV electrons at low doses. Int J Radiat Biol. 1992;61:345–53.CrossRefPubMed
35.
go back to reference Upton A, Bond V. NCRP Report No. 064 - Influence of Dose and Its Distribution in Time on Dose–response Relationships for Low-LET Radiations. 1980. Upton A, Bond V. NCRP Report No. 064 - Influence of Dose and Its Distribution in Time on Dose–response Relationships for Low-LET Radiations. 1980.
36.
go back to reference Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol Baltim Md 1950. 1984;133:1710–5. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol Baltim Md 1950. 1984;133:1710–5.
37.
go back to reference Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182:311–22.CrossRefPubMed Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182:311–22.CrossRefPubMed
38.
go back to reference Löbrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, et al. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle Georget Tex. 2010;9:662–9.CrossRef Löbrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, et al. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle Georget Tex. 2010;9:662–9.CrossRef
39.
go back to reference Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol CB. 2000;10:886–95.CrossRefPubMed Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol CB. 2000;10:886–95.CrossRefPubMed
40.
go back to reference Bhogal N, Kaspler P, Jalali F, Hyrien O, Chen R, Hill RP, et al. Late residual gamma-H2AX foci in murine skin are dose responsive and predict radiosensitivity in vivo. Radiat Res. 2010;173:1–9.CrossRefPubMed Bhogal N, Kaspler P, Jalali F, Hyrien O, Chen R, Hill RP, et al. Late residual gamma-H2AX foci in murine skin are dose responsive and predict radiosensitivity in vivo. Radiat Res. 2010;173:1–9.CrossRefPubMed
41.
go back to reference Mah L-J, El-Osta A, Karagiannis TC. gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24:679–86.CrossRefPubMed Mah L-J, El-Osta A, Karagiannis TC. gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24:679–86.CrossRefPubMed
42.
go back to reference Desai N, Durante M, Lin ZW, Cucinotta F, Wu H. High LET-induced H2AX phosphorylation around the Bragg curve. Adv Space Res Off J Comm Space Res COSPAR. 2005;35:236–42.CrossRef Desai N, Durante M, Lin ZW, Cucinotta F, Wu H. High LET-induced H2AX phosphorylation around the Bragg curve. Adv Space Res Off J Comm Space Res COSPAR. 2005;35:236–42.CrossRef
43.
go back to reference Fürweger C, Hajek M, Vana N, Kodym R, Okayasu R. Cellular signal transduction events as a function of linear energy transfer (LET). Radiat Prot Dosimetry. 2007;126:418–22.CrossRefPubMed Fürweger C, Hajek M, Vana N, Kodym R, Okayasu R. Cellular signal transduction events as a function of linear energy transfer (LET). Radiat Prot Dosimetry. 2007;126:418–22.CrossRefPubMed
44.
go back to reference Roig AI, Hight SK, Minna JD, Shay JW, Rusek A, Story MD. DNA damage intensity in fibroblasts in a 3-dimensional collagen matrix correlates with the Bragg curve energy distribution of a high LET particle. Int J Radiat Biol. 2010;86:194–204.CrossRefPubMedPubMedCentral Roig AI, Hight SK, Minna JD, Shay JW, Rusek A, Story MD. DNA damage intensity in fibroblasts in a 3-dimensional collagen matrix correlates with the Bragg curve energy distribution of a high LET particle. Int J Radiat Biol. 2010;86:194–204.CrossRefPubMedPubMedCentral
45.
go back to reference Antonelli F, Campa A, Esposito G, Giardullo P, Belli M, Dini V, et al. Induction and Repair of DNA DSB as Revealed by H2AX Phosphorylation Foci in Human Fibroblasts Exposed to Low- and High-LET Radiation: Relationship with Early and Delayed Reproductive Cell Death. Radiat Res. 2015;183:417–31.CrossRefPubMed Antonelli F, Campa A, Esposito G, Giardullo P, Belli M, Dini V, et al. Induction and Repair of DNA DSB as Revealed by H2AX Phosphorylation Foci in Human Fibroblasts Exposed to Low- and High-LET Radiation: Relationship with Early and Delayed Reproductive Cell Death. Radiat Res. 2015;183:417–31.CrossRefPubMed
46.
go back to reference Ostashevsky JY. A model relating cell survival to DNA fragment loss and unrepaired double-strand breaks. Radiat Res. 1989;118:437–66.CrossRefPubMed Ostashevsky JY. A model relating cell survival to DNA fragment loss and unrepaired double-strand breaks. Radiat Res. 1989;118:437–66.CrossRefPubMed
47.
go back to reference Britten RA, Nazaryan V, Davis LK, Klein SB, Nichiporov D, Mendonca MS, et al. Variations in the RBE for cell killing along the depth-dose profile of a modulated proton therapy beam. Radiat Res. 2013;179:21–8.CrossRefPubMed Britten RA, Nazaryan V, Davis LK, Klein SB, Nichiporov D, Mendonca MS, et al. Variations in the RBE for cell killing along the depth-dose profile of a modulated proton therapy beam. Radiat Res. 2013;179:21–8.CrossRefPubMed
48.
go back to reference Cruet-Hennequart S, Drougard C, Shaw G, Legendre F, Demoor M, Barry F, et al. Radiation-induced alterations of osteogenic and chondrogenic differentiation of human mesenchymal stem cells. PloS One. 2015;10:e0119334.CrossRefPubMedPubMedCentral Cruet-Hennequart S, Drougard C, Shaw G, Legendre F, Demoor M, Barry F, et al. Radiation-induced alterations of osteogenic and chondrogenic differentiation of human mesenchymal stem cells. PloS One. 2015;10:e0119334.CrossRefPubMedPubMedCentral
49.
go back to reference Ollitrault D, Legendre F, Drougard C, Briand M, Benateau H, Goux D, et al. BMP-2, Hypoxia, and COL1A1/HtrA1 siRNAs Favor Neo-Cartilage Hyaline Matrix Formation in Chondrocytes. Tissue Eng Part C Methods. 2014;21:133–47.CrossRefPubMedPubMedCentral Ollitrault D, Legendre F, Drougard C, Briand M, Benateau H, Goux D, et al. BMP-2, Hypoxia, and COL1A1/HtrA1 siRNAs Favor Neo-Cartilage Hyaline Matrix Formation in Chondrocytes. Tissue Eng Part C Methods. 2014;21:133–47.CrossRefPubMedPubMedCentral
50.
go back to reference Wakatsuki M, Magpayo N, Kawamura H, Held KD. Differential bystander signaling between radioresistant chondrosarcoma cells and fibroblasts after X-Ray, proton, iron Ion and carbon Ion exposures. Int J Radiat Oncol Biol Phys. 2012;84:E103–8.CrossRefPubMed Wakatsuki M, Magpayo N, Kawamura H, Held KD. Differential bystander signaling between radioresistant chondrosarcoma cells and fibroblasts after X-Ray, proton, iron Ion and carbon Ion exposures. Int J Radiat Oncol Biol Phys. 2012;84:E103–8.CrossRefPubMed
51.
go back to reference Chevalier F, Hamdi DH, Saintigny Y, Lefaix J-L. Proteomic overview and perspectives of the radiation-induced bystander effects. Mutat Res Rev Mutat Res. 2015;763:280–93.CrossRefPubMed Chevalier F, Hamdi DH, Saintigny Y, Lefaix J-L. Proteomic overview and perspectives of the radiation-induced bystander effects. Mutat Res Rev Mutat Res. 2015;763:280–93.CrossRefPubMed
Metadata
Title
In vitro engineering of human 3D chondrosarcoma: a preclinical model relevant for investigations of radiation quality impact
Authors
Dounia Houria Hamdi
Sofia Barbieri
François Chevalier
Jean-Emmanuel Groetz
Florence Legendre
Magali Demoor
Philippe Galera
Jean-Louis Lefaix
Yannick Saintigny
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1590-5

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine