Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Patterns of diagnostic imaging and associated radiation exposure among long-term survivors of young adult cancer: a population-based cohort study

Authors: Corinne Daly, David R. Urbach, Thérèse A. Stukel, Paul C. Nathan, Wayne Deitel, Lawrence F. Paszat, Andrew S. Wilton, Nancy N. Baxter

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Survivors of young adult malignancies are at risk of accumulated exposures to radiation from repetitive diagnostic imaging. We designed a population-based cohort study to describe patterns of diagnostic imaging and cumulative diagnostic radiation exposure among survivors of young adult cancer during a survivorship time period where surveillance imaging is not typically warranted.

Methods

Young adults aged 20–44 diagnosed with invasive malignancy in Ontario from 1992–1999 who lived at least 5 years from diagnosis were identified using the Ontario Cancer Registry and matched 5 to 1 to randomly selected cancer-free persons. We determined receipt of 5 modalities of diagnostic imaging and associated radiation dose received by survivors and controls from years 5–15 after diagnosis or matched referent date through administrative data. Matched pairs were censored six months prior to evidence of recurrence.

Results

20,911 survivors and 104,524 controls had a median of 13.5 years observation. Survivors received all modalities of diagnostic imaging at significantly higher rates than controls. Survivors received CT at a 3.49-fold higher rate (95 % Confidence Interval [CI]:3.37, 3.62) than controls in years 5 to 15 after diagnosis. Survivors received a mean radiation dose of 26 miliSieverts solely from diagnostic imaging in the same time period, a 4.57-fold higher dose than matched controls (95 % CI: 4.39, 4.81).

Conclusions

Long-term survivors of young adult cancer have a markedly higher rate of diagnostic imaging over time than matched controls, imaging associated with substantial radiation exposure, during a time period when surveillance is not routinely recommended.
Appendix
Available only for authorised users
Literature
1.
go back to reference Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168(1):1–64. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168(1):1–64.
2.
go back to reference Thompson DE, Mabuchi K, Ron E, Soda M, Tokunaga M, Ochikubo S, et al. Cancer Incidence in Atomic Bomb Survivors. Part II: Solid Tumors, 1958–1987. Radiat Res. 1994;137(2s):S17–67. Thompson DE, Mabuchi K, Ron E, Soda M, Tokunaga M, Ochikubo S, et al. Cancer Incidence in Atomic Bomb Survivors. Part II: Solid Tumors, 1958–1987. Radiat Res. 1994;137(2s):S17–67.
3.
go back to reference Preston DL, Kusumi S, Tomonaga M, Izumi S, Ron E, Kuramoto A, et al. Cancer Incidence in Atomic Bomb Survivors. Part III: Leukemia, Lymphoma and Multiple Myeloma, 1950–1987. Radiat Res. 1994;137(2s):S68–97. Preston DL, Kusumi S, Tomonaga M, Izumi S, Ron E, Kuramoto A, et al. Cancer Incidence in Atomic Bomb Survivors. Part III: Leukemia, Lymphoma and Multiple Myeloma, 1950–1987. Radiat Res. 1994;137(2s):S68–97.
4.
go back to reference Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, et al. Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proc Natl Acad Sci. 2003;100(24):13761–6. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, et al. Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proc Natl Acad Sci. 2003;100(24):13761–6.
5.
go back to reference Boice JD, Preston D, Davis FG, Monson RR. Frequent Chest X-Ray Fluoroscopy and Breast Cancer Incidence among Tuberculosis Patients in Massachusetts. Radiat Res. 1991;125(2):214–22.CrossRefPubMed Boice JD, Preston D, Davis FG, Monson RR. Frequent Chest X-Ray Fluoroscopy and Breast Cancer Incidence among Tuberculosis Patients in Massachusetts. Radiat Res. 1991;125(2):214–22.CrossRefPubMed
6.
go back to reference Eisenberg MJ, Afilalo J, Lawler PR, Abrahamowicz M, Richard H, Pilote L. Cancer risk related to low-dose ionizing radiation from cardiac imaging in patients after acute myocardial infarction. Can Med Assoc J. 2011;183(4):430–6.CrossRef Eisenberg MJ, Afilalo J, Lawler PR, Abrahamowicz M, Richard H, Pilote L. Cancer risk related to low-dose ionizing radiation from cardiac imaging in patients after acute myocardial infarction. Can Med Assoc J. 2011;183(4):430–6.CrossRef
7.
go back to reference Myles P, Evans S, Lophatananon A, Dimitropoulou P, Easton D, Key T, et al. Diagnostic radiation procedures and risk of prostate cancer. Br J Cancer. 2008;98(11):1852–6. Myles P, Evans S, Lophatananon A, Dimitropoulou P, Easton D, Key T, et al. Diagnostic radiation procedures and risk of prostate cancer. Br J Cancer. 2008;98(11):1852–6.
8.
go back to reference Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.CrossRefPubMed Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.CrossRefPubMed
9.
go back to reference Brenner DJ. Should we be concerned about the rapid increase in CT usage? Rev Environ Health. 2010;25(1):63–8.CrossRefPubMed Brenner DJ. Should we be concerned about the rapid increase in CT usage? Rev Environ Health. 2010;25(1):63–8.CrossRefPubMed
11.
go back to reference Smith-Bindman R, Lipson J, Marcus R, Kim K-P, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078–86. Smith-Bindman R, Lipson J, Marcus R, Kim K-P, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078–86.
12.
go back to reference Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505.
13.
go back to reference Berrington de Gonzalez A, Mahesh M, Kim K-P, Bhargavan M, Lewis R, Mettler F, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009;169(22):2071–7. Berrington de Gonzalez A, Mahesh M, Kim K-P, Bhargavan M, Lewis R, Mettler F, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009;169(22):2071–7.
14.
go back to reference Cancer Care Ontario: Cancer in Young Adults in Canada, Toronto, Canada; 2006. ISBN 0-921325-10-X (print), ISBN 0-921325-11-8 (pdf). Cancer Care Ontario: Cancer in Young Adults in Canada, Toronto, Canada; 2006. ISBN 0-921325-10-X (print), ISBN 0-921325-11-8 (pdf).
15.
go back to reference Pijpe A, Andrieu N, Easton DF, Kesminiene A, Cardis E, Noguès C, et al. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). Br Med J. 2012;345, e5660. Pijpe A, Andrieu N, Easton DF, Kesminiene A, Cardis E, Noguès C, et al. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). Br Med J. 2012;345, e5660.
16.
go back to reference National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Hodgkin Lymphoma. Version I. 2012. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Hodgkin Lymphoma. Version I. 2012.
17.
go back to reference Grunfeld E, Dhesy-Thind S, Levine M. Clinical practice guidelines for the care and treatment of breast cancer: follow-up after treatment for breast cancer (summary of the 2005 update). Can Med Assoc J. 2005;172(10):1319–20.CrossRef Grunfeld E, Dhesy-Thind S, Levine M. Clinical practice guidelines for the care and treatment of breast cancer: follow-up after treatment for breast cancer (summary of the 2005 update). Can Med Assoc J. 2005;172(10):1319–20.CrossRef
18.
go back to reference National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Testicular Cancer. 2012. Version I. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Testicular Cancer. 2012. Version I.
19.
go back to reference National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Non-Hodgkin's Lymphomas. 2013. Version I. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Non-Hodgkin's Lymphomas. 2013. Version I.
20.
go back to reference Larouche JF, Berger F, Chassagne-Clement C, Ffrench M, Callet-Bauchu E, Sebban C, et al. Lymphoma recurrence 5 years or later following diffuse large B-cell lymphoma: clinical characteristics and outcome. J Clin Oncol. 2010;28(12):2094–100. Larouche JF, Berger F, Chassagne-Clement C, Ffrench M, Callet-Bauchu E, Sebban C, et al. Lymphoma recurrence 5 years or later following diffuse large B-cell lymphoma: clinical characteristics and outcome. J Clin Oncol. 2010;28(12):2094–100.
21.
go back to reference Provencio M, Salas C, Millan I, Cantos B, Sanchez A, Bellas C. Late relapses in Hodgkin lymphoma: a clinical and immunohistochemistry study. Leuk Lymphoma. 2010;51(9):1686–91.CrossRefPubMed Provencio M, Salas C, Millan I, Cantos B, Sanchez A, Bellas C. Late relapses in Hodgkin lymphoma: a clinical and immunohistochemistry study. Leuk Lymphoma. 2010;51(9):1686–91.CrossRefPubMed
22.
go back to reference Saphner T, Tormey DC, Gray R. Annual hazard rates of recurrence for breast cancer after primary therapy. J Clin Oncol. 1996;14(10):2738–46.PubMed Saphner T, Tormey DC, Gray R. Annual hazard rates of recurrence for breast cancer after primary therapy. J Clin Oncol. 1996;14(10):2738–46.PubMed
23.
go back to reference Daugaard G, Gundgaard MG, Mortensen MS, Agerbaek M, Holm NV, Rorth M, et al. Surveillance for stage I nonseminoma testicular cancer: outcomes and long-term follow-up in a population-based cohort. J Clin Oncol. 2014;32(34):3817–23. Daugaard G, Gundgaard MG, Mortensen MS, Agerbaek M, Holm NV, Rorth M, et al. Surveillance for stage I nonseminoma testicular cancer: outcomes and long-term follow-up in a population-based cohort. J Clin Oncol. 2014;32(34):3817–23.
24.
go back to reference Seo SI, Lim SB, Yoon YS, Kim CW, Yu CS, Kim TW, et al. Comparison of recurrence patterns between </=5 years and >5 years after curative operations in colorectal cancer patients. J Surg Oncol. 2013;108(1):9–13. Seo SI, Lim SB, Yoon YS, Kim CW, Yu CS, Kim TW, et al. Comparison of recurrence patterns between </=5 years and >5 years after curative operations in colorectal cancer patients. J Surg Oncol. 2013;108(1):9–13.
25.
go back to reference Rueth NM, Cromwell KD, Cormier JN. Long-term Follow-up for Melanoma Patients: Is There Any Evidence of a Benefit? Surg Oncol Clin N Am. 2015;24(2):359–77.CrossRefPubMedPubMedCentral Rueth NM, Cromwell KD, Cormier JN. Long-term Follow-up for Melanoma Patients: Is There Any Evidence of a Benefit? Surg Oncol Clin N Am. 2015;24(2):359–77.CrossRefPubMedPubMedCentral
26.
go back to reference Montgomery DA, Krupa K, Cooke TG. Follow-up in breast cancer: does routine clinical examination improve outcome? A systematic review of the literature. Br J Cancer. 2007;97(12):1632–41.CrossRefPubMedPubMedCentral Montgomery DA, Krupa K, Cooke TG. Follow-up in breast cancer: does routine clinical examination improve outcome? A systematic review of the literature. Br J Cancer. 2007;97(12):1632–41.CrossRefPubMedPubMedCentral
27.
go back to reference Pivot X, Asmar L, Hortobagyi GN, Theriault R, Pastorini F, Buzdar A. A retrospective study of first indicators of breast cancer recurrence. Oncology. 2000;58(3):185–90.CrossRefPubMed Pivot X, Asmar L, Hortobagyi GN, Theriault R, Pastorini F, Buzdar A. A retrospective study of first indicators of breast cancer recurrence. Oncology. 2000;58(3):185–90.CrossRefPubMed
28.
go back to reference Rojas MP, Telaro E, Russo A, Moschetti I, Coe L, Fossati R, et al. Follow-up strategies for women treated for early breast cancer. Cochrane Database Syst Rev. 2005;1:Cd001768. Rojas MP, Telaro E, Russo A, Moschetti I, Coe L, Fossati R, et al. Follow-up strategies for women treated for early breast cancer. Cochrane Database Syst Rev. 2005;1:Cd001768.
29.
go back to reference Robles SC, Marrett LD, Clarke EA, Risch HA. An application of capture-recapture methods to the estimation of completeness of cancer registration. J Clin Epidemiol. 1988;41(5):495–501.CrossRefPubMed Robles SC, Marrett LD, Clarke EA, Risch HA. An application of capture-recapture methods to the estimation of completeness of cancer registration. J Clin Epidemiol. 1988;41(5):495–501.CrossRefPubMed
30.
go back to reference Tan J. The Processes of Care after Colorectal Cancer Surgery in Ontario. Toronto: University of Toronto; 2008. Tan J. The Processes of Care after Colorectal Cancer Surgery in Ontario. Toronto: University of Toronto; 2008.
31.
go back to reference Pearce MS, Salotti JA, McHugh K, Kim KP, Craft AW, Lubin J, et al. Socio-economic variation in CT scanning in Northern England, 1990–2002. BMC Health Serv Res. 2012;12:24. Pearce MS, Salotti JA, McHugh K, Kim KP, Craft AW, Lubin J, et al. Socio-economic variation in CT scanning in Northern England, 1990–2002. BMC Health Serv Res. 2012;12:24.
32.
go back to reference Smith-Bindman R, Miglioretti DL, Johnson E, Lee C, Feigelson HS, Flynn M, et al. Use of Diagnostic Imaging Studies and Associated Radiation Exposure for Patients Enrolled in Large Integrated Health Care Systems, 1996-2010Diagnostic Imaging and Radiation Exposure. JAMA. 2012;307(22):2400–9. Smith-Bindman R, Miglioretti DL, Johnson E, Lee C, Feigelson HS, Flynn M, et al. Use of Diagnostic Imaging Studies and Associated Radiation Exposure for Patients Enrolled in Large Integrated Health Care Systems, 1996-2010Diagnostic Imaging and Radiation Exposure. JAMA. 2012;307(22):2400–9.
33.
go back to reference Fazel R, Krumholz HM, Wang Y, Ross JS, Chen J, Ting HH, et al. Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med. 2009;361(9):849–57. Fazel R, Krumholz HM, Wang Y, Ross JS, Chen J, Ting HH, et al. Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med. 2009;361(9):849–57.
36.
go back to reference Mettler Jr FA, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254–63.CrossRefPubMed Mettler Jr FA, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254–63.CrossRefPubMed
38.
go back to reference United Nations Scientific Committee on the Effects of Atomic Radiation. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly, vol. I. New York, New York, Report: UNSCEAR; 2000. United Nations Scientific Committee on the Effects of Atomic Radiation. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly, vol. I. New York, New York, Report: UNSCEAR; 2000.
39.
go back to reference Stern S. Nationwide evaluation of x-ray trends (NEXT): Tabulation and graphical summary of 2000 survey of computed tomography. Frankfort: Conference of Radiation Control Program Directors; 2007. Stern S. Nationwide evaluation of x-ray trends (NEXT): Tabulation and graphical summary of 2000 survey of computed tomography. Frankfort: Conference of Radiation Control Program Directors; 2007.
40.
go back to reference Keating NL, Landrum MB, Guadagnoli E, Winer EP, Ayanian JZ. Factors related to underuse of surveillance mammography among breast cancer survivors. J Clin Oncol. 2006;24(1):85–94.CrossRefPubMed Keating NL, Landrum MB, Guadagnoli E, Winer EP, Ayanian JZ. Factors related to underuse of surveillance mammography among breast cancer survivors. J Clin Oncol. 2006;24(1):85–94.CrossRefPubMed
41.
go back to reference Field TS, Doubeni C, Fox MP, Buist DSM, Wei F, Geiger AM, et al. Under utilization of surveillance mammography among older breast cancer survivors. J Gen Intern Med. 2008;23(2):158–63. Field TS, Doubeni C, Fox MP, Buist DSM, Wei F, Geiger AM, et al. Under utilization of surveillance mammography among older breast cancer survivors. J Gen Intern Med. 2008;23(2):158–63.
42.
go back to reference van Walraven C, Fergusson D, Earle C, Baxter N, Alibhai S, MacDonald B, et al. Association of diagnostic radiation exposure and second abdominal-pelvic malignancies after testicular cancer. J Clin Oncol. 2011;29(21):2883–8. van Walraven C, Fergusson D, Earle C, Baxter N, Alibhai S, MacDonald B, et al. Association of diagnostic radiation exposure and second abdominal-pelvic malignancies after testicular cancer. J Clin Oncol. 2011;29(21):2883–8.
43.
go back to reference Hodgson DC, Grunfeld E, Gunraj N, Del Giudice L. A population-based study of follow-up care for Hodgkin lymphoma survivors: opportunities to improve surveillance for relapse and late effects. Cancer. 2010;116(14):3417–25.CrossRefPubMed Hodgson DC, Grunfeld E, Gunraj N, Del Giudice L. A population-based study of follow-up care for Hodgkin lymphoma survivors: opportunities to improve surveillance for relapse and late effects. Cancer. 2010;116(14):3417–25.CrossRefPubMed
44.
go back to reference Chung P, Mayhew M, Warde P, Winquist E, Lukka H, Members of the Genitourinary Cancer Disease Site Group. Management of Stage I Seminoma: Guideline Recommendations. Program in Evidence-Based Care: A Cancer Care Ontario Program; 2008:Evidence-based series #3-18: Section 11. Chung P, Mayhew M, Warde P, Winquist E, Lukka H, Members of the Genitourinary Cancer Disease Site Group. Management of Stage I Seminoma: Guideline Recommendations. Program in Evidence-Based Care: A Cancer Care Ontario Program; 2008:Evidence-based series #3-18: Section 11.
45.
go back to reference Elit L, Fung-Kee-Fung M, Oliver T, Gynecology Cancer Disease Site Group. Follow-up for women after treatment for cervical cancer: guidelines recommendations. Program in Evidence-Based Care: A Cancer Care Ontario Program; 2009: Evidence-based series #4-16: Section 11. Elit L, Fung-Kee-Fung M, Oliver T, Gynecology Cancer Disease Site Group. Follow-up for women after treatment for cervical cancer: guidelines recommendations. Program in Evidence-Based Care: A Cancer Care Ontario Program; 2009: Evidence-based series #4-16: Section 11.
46.
go back to reference National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Thyroid Carcinoma. 2012. Version 2. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Thyroid Carcinoma. 2012. Version 2.
47.
go back to reference Dryver ET, Jernstrom H, Tompkins K, Buckstein R, Imrie KR. Follow-up of patients with Hodgkin’s disease following curative treatment: the routine CT scan is of little value. Br J Cancer. 2003;89(3):482–6.CrossRefPubMedPubMedCentral Dryver ET, Jernstrom H, Tompkins K, Buckstein R, Imrie KR. Follow-up of patients with Hodgkin’s disease following curative treatment: the routine CT scan is of little value. Br J Cancer. 2003;89(3):482–6.CrossRefPubMedPubMedCentral
48.
go back to reference Voss SD, Chen L, Constine LS, Chauvenet A, Fitzgerald TJ, Kaste SC, et al. Surveillance Computed Tomography Imaging and Detection of Relapse in Intermediate- and Advanced-Stage Pediatric Hodgkin’s Lymphoma: A Report From the Children’s Oncology Group. J Clin Oncol. 2012;30(21):2635–40. Voss SD, Chen L, Constine LS, Chauvenet A, Fitzgerald TJ, Kaste SC, et al. Surveillance Computed Tomography Imaging and Detection of Relapse in Intermediate- and Advanced-Stage Pediatric Hodgkin’s Lymphoma: A Report From the Children’s Oncology Group. J Clin Oncol. 2012;30(21):2635–40.
49.
go back to reference Yaffe MJ, Mainprize JG. Risk of radiation-induced breast cancer from mammographic screening. Radiology. 2011;258(1):98–105.CrossRefPubMed Yaffe MJ, Mainprize JG. Risk of radiation-induced breast cancer from mammographic screening. Radiology. 2011;258(1):98–105.CrossRefPubMed
50.
go back to reference Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Br Med J. 2013;346. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Br Med J. 2013;346.
51.
go back to reference Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys. 2003;56(1):83–8.CrossRefPubMed Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys. 2003;56(1):83–8.CrossRefPubMed
52.
go back to reference Maddams J, Parkin DM, Darby SC. The cancer burden in the United Kingdom in 2007 due to radiotherapy. Int J Cancer. 2011;129(12):2885–93.CrossRefPubMed Maddams J, Parkin DM, Darby SC. The cancer burden in the United Kingdom in 2007 due to radiotherapy. Int J Cancer. 2011;129(12):2885–93.CrossRefPubMed
Metadata
Title
Patterns of diagnostic imaging and associated radiation exposure among long-term survivors of young adult cancer: a population-based cohort study
Authors
Corinne Daly
David R. Urbach
Thérèse A. Stukel
Paul C. Nathan
Wayne Deitel
Lawrence F. Paszat
Andrew S. Wilton
Nancy N. Baxter
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1578-1

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine