Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Technical advance

Optimisation of immunofluorescence methods to determine MCT1 and MCT4 expression in circulating tumour cells

Authors: Stephen Kershaw, Jeffrey Cummings, Karen Morris, Jonathan Tugwood, Caroline Dive

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

The monocarboxylate transporter-1 (MCT1) represents a novel target in rational anticancer drug design while AZD3965 was developed as an inhibitor of this transporter and is undergoing Phase I clinical trials (http://​www.​clinicaltrials.​gov/​show/​NCT01791595). We describe the optimisation of an immunofluorescence (IF) method for determination of MCT1 and MCT4 in circulating tumour cells (CTC) as potential prognostic and predictive biomarkers of AZD3965 in cancer patients.

Methods

Antibody selectivity was investigated by western blotting (WB) in K562 and MDAMB231 cell lines acting as positive controls for MCT1 and MCT4 respectively and by flow cytometry also employing the control cell lines. Ability to detect MCT1 and MCT4 in CTC as a 4th channel marker utilising the Veridex™ CellSearch system was conducted in both human volunteer blood spiked with control cells and in samples collected from small cell lung cancer (SCLC) patients.

Results

Experimental conditions were established which yielded a 10-fold dynamic range (DR) for detection of MCT1 over MCT4 (antibody concentration 6.25 μg/mL; integration time 0.4 seconds) and a 5-fold DR of MCT4 over MCT 1 (8 μg/100 μL and 0.8 seconds). The IF method was sufficiently sensitive to detect both MCT1 and MCT4 in CTCs harvested from cancer patients.

Conclusions

The first IF method has been developed and optimised for detection of MCT 1 and MCT4 in cancer patient CTC.
Literature
2.
go back to reference Semenza GL, Artemov D, Bedi A, Bhujwalla Z, Chiles K, Feldser D, et al. ‘The metabolism of tumours’: 70 years later. Novartis Found Symp. 2001;240:251–60. discussion 260–254.CrossRefPubMed Semenza GL, Artemov D, Bedi A, Bhujwalla Z, Chiles K, Feldser D, et al. ‘The metabolism of tumours’: 70 years later. Novartis Found Symp. 2001;240:251–60. discussion 260–254.CrossRefPubMed
3.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effects: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.CrossRefPubMedPubMedCentral Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effects: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.CrossRefPubMedPubMedCentral
4.
go back to reference Halestrap AP, Meredith D. The SCL16 gene family – from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Eur J Physiol. 2004;447:619–28.CrossRef Halestrap AP, Meredith D. The SCL16 gene family – from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Eur J Physiol. 2004;447:619–28.CrossRef
6.
go back to reference Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochemical J. 1999;343(Pt 2):281–99.CrossRef Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochemical J. 1999;343(Pt 2):281–99.CrossRef
7.
go back to reference Sonveaux P, Végan F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, et al. Targeting lactate-fuelled respiration selectively kills hypoxic tumour cells in mice. J Clin Invest. 2008;118(12):3930–42.PubMedPubMedCentral Sonveaux P, Végan F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, et al. Targeting lactate-fuelled respiration selectively kills hypoxic tumour cells in mice. J Clin Invest. 2008;118(12):3930–42.PubMedPubMedCentral
8.
go back to reference Polański RHC, Fusi A, Nonaka D, Priest L, Kelly P, Trapani F, et al. Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res. 2014;20(4):926–37.CrossRefPubMed Polański RHC, Fusi A, Nonaka D, Priest L, Kelly P, Trapani F, et al. Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res. 2014;20(4):926–37.CrossRefPubMed
9.
go back to reference Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB, Koch BJ, et al. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia. 2011;13(7):620–32.CrossRefPubMedPubMedCentral Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB, Koch BJ, et al. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia. 2011;13(7):620–32.CrossRefPubMedPubMedCentral
10.
go back to reference Kennedy KM, Dewhirst MW. Tumour metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 2010;6(1):127–48.CrossRefPubMedPubMedCentral Kennedy KM, Dewhirst MW. Tumour metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 2010;6(1):127–48.CrossRefPubMedPubMedCentral
11.
go back to reference Ekberg H, Qi Z, Pahlman C, Veress B, Bundick RV, Craggs RI, et al. The specific monocarboxylate transporter-1 (MCT-1) inhibitor, AR-C117977, induces donor-specific suppression, reducing acute and chronic allograft rejection in the rat. Transplantation. 2007;84(9):1191–9.CrossRefPubMed Ekberg H, Qi Z, Pahlman C, Veress B, Bundick RV, Craggs RI, et al. The specific monocarboxylate transporter-1 (MCT-1) inhibitor, AR-C117977, induces donor-specific suppression, reducing acute and chronic allograft rejection in the rat. Transplantation. 2007;84(9):1191–9.CrossRefPubMed
12.
go back to reference Gallagher SM, Castorino JJ, Wang D, Philp NJ. Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res. 2007;67:4182–9.CrossRefPubMed Gallagher SM, Castorino JJ, Wang D, Philp NJ. Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res. 2007;67:4182–9.CrossRefPubMed
13.
14.
go back to reference Gostner JM, Fong D, Wrulich OA, Lehne F, Zitt M, Hermann M, et al. Effects of EpCAM overexpression on human breast cancer cell lines. BMC Cancer. 2011;11:45.CrossRefPubMedPubMedCentral Gostner JM, Fong D, Wrulich OA, Lehne F, Zitt M, Hermann M, et al. Effects of EpCAM overexpression on human breast cancer cell lines. BMC Cancer. 2011;11:45.CrossRefPubMedPubMedCentral
15.
go back to reference Alix-Panabieres C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59(1):110–8.CrossRefPubMed Alix-Panabieres C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59(1):110–8.CrossRefPubMed
16.
go back to reference Cummings J, Morris K, Zhou C, Sloane R, Lancashire M, Morris D, et al. Method validation of circulating tumour cell enumeration at low cell counts. BMC Cancer. 2013;13(1):415–23.CrossRefPubMedPubMedCentral Cummings J, Morris K, Zhou C, Sloane R, Lancashire M, Morris D, et al. Method validation of circulating tumour cell enumeration at low cell counts. BMC Cancer. 2013;13(1):415–23.CrossRefPubMedPubMedCentral
17.
go back to reference Cummings J, Sloane R, Morris K, Zhou C, Lancashire M, Moore D, et al. Optimisation of an immunohistochemistry method for the determination of androgen receptor expression levels in circulating tumour cells. BMC Cancer. 2014;14(1):226.CrossRefPubMedPubMedCentral Cummings J, Sloane R, Morris K, Zhou C, Lancashire M, Moore D, et al. Optimisation of an immunohistochemistry method for the determination of androgen receptor expression levels in circulating tumour cells. BMC Cancer. 2014;14(1):226.CrossRefPubMedPubMedCentral
18.
go back to reference Khoja L, Lorigan P, Zhou C, Lancashire M, Booth J, Cummings J, et al. Biomarker utility of circulating tumor cells in metastatic cutaneous melanoma. J Invest Dermatol. 2013;133(6):1582–90.CrossRefPubMed Khoja L, Lorigan P, Zhou C, Lancashire M, Booth J, Cummings J, et al. Biomarker utility of circulating tumor cells in metastatic cutaneous melanoma. J Invest Dermatol. 2013;133(6):1582–90.CrossRefPubMed
19.
go back to reference Lee JW, Devanarayan V, Barrett YC, Weiner R, Allinson J, Fountain S, et al. Fit-for-purpose method development and validation for successful biomarker measurement. Pharm Res. 2006;23(2):312–28.CrossRefPubMed Lee JW, Devanarayan V, Barrett YC, Weiner R, Allinson J, Fountain S, et al. Fit-for-purpose method development and validation for successful biomarker measurement. Pharm Res. 2006;23(2):312–28.CrossRefPubMed
20.
go back to reference Lee JW, Hall M. Method validation of protein biomarkers in support of drug development or clinical diagnosis/prognosis. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(13):1259–71.CrossRefPubMed Lee JW, Hall M. Method validation of protein biomarkers in support of drug development or clinical diagnosis/prognosis. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(13):1259–71.CrossRefPubMed
21.
go back to reference Lee JW, Weiner RS, Sailstad JM, Bowsher RR, Knuth DW, O’Brien PJ, et al. Method validation and measurement of biomarkers in nonclinical and clinical samples in drug development: a conference report. Pharm Res. 2005;22(4):499–511.CrossRefPubMed Lee JW, Weiner RS, Sailstad JM, Bowsher RR, Knuth DW, O’Brien PJ, et al. Method validation and measurement of biomarkers in nonclinical and clinical samples in drug development: a conference report. Pharm Res. 2005;22(4):499–511.CrossRefPubMed
22.
go back to reference Miller KJ, Bowsher RR, Celniker A, Gibbons J, Gupta S, Lee JW, et al. Workshop on bioanalytical methods validation for macromolecules: summary report. Pharm Res. 2001;18(9):1373–83.CrossRefPubMed Miller KJ, Bowsher RR, Celniker A, Gibbons J, Gupta S, Lee JW, et al. Workshop on bioanalytical methods validation for macromolecules: summary report. Pharm Res. 2001;18(9):1373–83.CrossRefPubMed
23.
go back to reference Cummings J, Raynaud F, Jones L, Sugar R, Dive C. Fit-for-purpose biomarker method validation for application in clinical trials of anticancer drugs. Br J Cancer. 2010;103(9):1313–7.CrossRefPubMedPubMedCentral Cummings J, Raynaud F, Jones L, Sugar R, Dive C. Fit-for-purpose biomarker method validation for application in clinical trials of anticancer drugs. Br J Cancer. 2010;103(9):1313–7.CrossRefPubMedPubMedCentral
24.
25.
go back to reference Cummings J, Ward TH, Greystoke A, Ranson M, Dive C. Biomarker method validation in anticancer drug development. Br J Pharmacol. 2008;153(4):646–56.CrossRefPubMed Cummings J, Ward TH, Greystoke A, Ranson M, Dive C. Biomarker method validation in anticancer drug development. Br J Pharmacol. 2008;153(4):646–56.CrossRefPubMed
26.
go back to reference Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F. Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J. 2005;46(3):51–6.CrossRef Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F. Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J. 2005;46(3):51–6.CrossRef
27.
go back to reference Parkinson DR, Dracopoli N, Petty BG, Compton C, Cristofanilli M, Diesseroth A, et al. Considerations in the development of circulating tumour cell technology for clinical use. J Transl Med. 2012;10:138.CrossRefPubMedPubMedCentral Parkinson DR, Dracopoli N, Petty BG, Compton C, Cristofanilli M, Diesseroth A, et al. Considerations in the development of circulating tumour cell technology for clinical use. J Transl Med. 2012;10:138.CrossRefPubMedPubMedCentral
28.
go back to reference Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, et al. Relationship of circulating tumour cells to tumour response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(19):3213–21.CrossRefPubMed Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, et al. Relationship of circulating tumour cells to tumour response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(19):3213–21.CrossRefPubMed
29.
go back to reference Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Eng J Med. 2004;351(8):781–91.CrossRef Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Eng J Med. 2004;351(8):781–91.CrossRef
30.
go back to reference Danila DC, Heller G, Gignac GA, Gonzalez-Espinoza R, Anand A, Tanaka E, et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res. 2007;13(23):7053–8.CrossRefPubMed Danila DC, Heller G, Gignac GA, Gonzalez-Espinoza R, Anand A, Tanaka E, et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res. 2007;13(23):7053–8.CrossRefPubMed
31.
32.
go back to reference de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14(19):6302–9.CrossRefPubMed de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14(19):6302–9.CrossRefPubMed
33.
go back to reference Devriese LA, Voest EE, Beijnen JH, Schellens JH. Circulating tumor cells as pharmacodynamic biomarker in early clinical oncological trials. Cancer Treat Rev. 2011;37(8):579–89.CrossRefPubMed Devriese LA, Voest EE, Beijnen JH, Schellens JH. Circulating tumor cells as pharmacodynamic biomarker in early clinical oncological trials. Cancer Treat Rev. 2011;37(8):579–89.CrossRefPubMed
34.
go back to reference Scher HI, Jia X, de Bono JS, Fleisher M, Pienta KJ, Raghavan D, et al. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. 2009;10(3):233–9.CrossRefPubMedPubMedCentral Scher HI, Jia X, de Bono JS, Fleisher M, Pienta KJ, Raghavan D, et al. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. 2009;10(3):233–9.CrossRefPubMedPubMedCentral
35.
go back to reference Tol J, Koopman M, Miller MC, Tibbe A, Cats A, Creemers GJM, et al. Circulating tumour cells early predict progression-free and overall survival in advanced colorectal cancer patients treated with chemotherapy and targeted agents. Ann Oncol. 2010;21:1006–12.CrossRefPubMed Tol J, Koopman M, Miller MC, Tibbe A, Cats A, Creemers GJM, et al. Circulating tumour cells early predict progression-free and overall survival in advanced colorectal cancer patients treated with chemotherapy and targeted agents. Ann Oncol. 2010;21:1006–12.CrossRefPubMed
36.
go back to reference Khan MS, Kirkwood A, Tsigani T, Garcia-Hernandez J, Hartley JA, Caplin ME, et al. Circulating tumor cells as prognostic markers in neuroendocrine tumors. J Clin Oncol. 2013;31(3):365–72.CrossRefPubMed Khan MS, Kirkwood A, Tsigani T, Garcia-Hernandez J, Hartley JA, Caplin ME, et al. Circulating tumor cells as prognostic markers in neuroendocrine tumors. J Clin Oncol. 2013;31(3):365–72.CrossRefPubMed
37.
go back to reference Hayashi N, Yamauchi H. Role of circulating tumor cells and disseminated tumor cells in primary breast cancer. Breast Cancer. 2012;19(2):110–7.CrossRefPubMed Hayashi N, Yamauchi H. Role of circulating tumor cells and disseminated tumor cells in primary breast cancer. Breast Cancer. 2012;19(2):110–7.CrossRefPubMed
Metadata
Title
Optimisation of immunofluorescence methods to determine MCT1 and MCT4 expression in circulating tumour cells
Authors
Stephen Kershaw
Jeffrey Cummings
Karen Morris
Jonathan Tugwood
Caroline Dive
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1382-y

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine