Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Transcriptional implications of intragenic DNA methylation in the oestrogen receptor alpha gene in breast cancer cells and tissues

Authors: Natalie S Shenker, Kirsty J Flower, Charlotte S Wilhelm-Benartzi, Wei Dai, Emma Bell, Edmund Gore, Mona El Bahrawy, Gillian Weaver, Robert Brown, James M Flanagan

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

DNA methylation variability regions (MVRs) across the oestrogen receptor alpha (ESR1) gene have been identified in peripheral blood cells from breast cancer patients and healthy individuals. In contrast to promoter methylation, gene body methylation may be important in maintaining active transcription. This study aimed to assess MVRs in ESR1 in breast cancer cell lines, tumour biopsies and exfoliated epithelial cells from expressed breast milk (EBM), to determine their significance for ESR1 transcription.

Methods

DNA methylation levels in eight MVRs across ESR1 were assessed by pyrosequencing bisulphite-converted DNA from three oestrogen receptor (ER)-positive and three ER-negative breast cancer cell lines. DNA methylation and expression were assessed following treatment with DAC (1 μM), or DMSO (controls). ESR1 methylation levels were also assayed in DNA from 155 invasive ductal carcinoma biopsies provided by the Breast Cancer Campaign Tissue Bank, and validated with DNA methylation profiles from the TCGA breast tumours (n = 356 ER-pos, n = 109 ER-neg). DNA methylation was profiled in exfoliated breast epithelial cells from EBM using the Illumina 450 K (n = 36) and pyrosequencing in a further 53 donor samples. ESR1 mRNA levels were measured by qRT-PCR.

Results

We show that ER-positive cell lines had unmethylated ESR1 promoter regions and highly methylated intragenic regions (median, 80.45%) while ER-negative cells had methylated promoters and lower intragenic methylation levels (median, 38.62%). DAC treatment increased ESR1 expression in ER-negative cells, but significantly reduced methylation and expression of ESR1 in ER-positive cells. The ESR1 promoter was unmethylated in breast tumour biopsies with high levels of intragenic methylation, independent of ER status. However, ESR1 methylation in the strongly ER-positive EBM DNA samples were very similar to ER-positive tumour cell lines.

Conclusion

DAC treatment inhibited ESR1 transcription in cells with an unmethylated ESR1 promoter and reduced intragenic DNA methylation. Intragenic methylation levels correlated with ESR1 expression in homogenous cell populations (cell lines and exfoliated primary breast epithelial cells), but not in heterogeneous tumour biopsies, highlighting the significant differences between the in vivo tumour microenvironment and individual homogenous cell types. These findings emphasise the need for care when choosing material for epigenetic research and highlights the presence of aberrant intragenic methylation levels in tumour tissue.
Appendix
Available only for authorised users
Literature
1.
go back to reference Benson JR, Jatoi I, Keisch M, Esteva FJ, Makris A, Jordan VC. Early breast cancer. Lancet. 2009;373(9673):1463–79.CrossRefPubMed Benson JR, Jatoi I, Keisch M, Esteva FJ, Makris A, Jordan VC. Early breast cancer. Lancet. 2009;373(9673):1463–79.CrossRefPubMed
3.
go back to reference Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10(7):687–92.CrossRefPubMed Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10(7):687–92.CrossRefPubMed
4.
go back to reference Baylin S, Herman J, Graff J, Vertino P, Issa J. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–96.CrossRefPubMed Baylin S, Herman J, Graff J, Vertino P, Issa J. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–96.CrossRefPubMed
5.
go back to reference Nathan D, Crothers DM. Bending and flexibility of methylated and unmethylated EcoRI DNA. J Mol Biol. 2002;316(1):7–17.CrossRefPubMed Nathan D, Crothers DM. Bending and flexibility of methylated and unmethylated EcoRI DNA. J Mol Biol. 2002;316(1):7–17.CrossRefPubMed
6.
go back to reference Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304.CrossRefPubMed Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304.CrossRefPubMed
7.
go back to reference Ehrlich M, Lacey M. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics. 2013;5(5):553–68.CrossRefPubMed Ehrlich M, Lacey M. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics. 2013;5(5):553–68.CrossRefPubMed
8.
go back to reference Blattler A, Yao L, Witt H, Guo Y, Nicolet CM, Berman BP, et al. Global loss of DNA methylation uncovers intronic enhancers in genes showing expression changes. Genome Biol. 2014;15(9):469.CrossRefPubMedPubMedCentral Blattler A, Yao L, Witt H, Guo Y, Nicolet CM, Berman BP, et al. Global loss of DNA methylation uncovers intronic enhancers in genes showing expression changes. Genome Biol. 2014;15(9):469.CrossRefPubMedPubMedCentral
9.
go back to reference Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466(7303):253–7.CrossRefPubMedPubMedCentral Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466(7303):253–7.CrossRefPubMedPubMedCentral
10.
11.
go back to reference Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One. 2011;6(1):e14524.CrossRefPubMedPubMedCentral Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One. 2011;6(1):e14524.CrossRefPubMedPubMedCentral
12.
go back to reference Cleator SJ, Ahamed E, Coombes RC, Palmieri C. A 2009 update on the treatment of patients with hormone receptor-positive breast cancer. Clin Breast Cancer. 2009;9 Suppl 1:S6–17.CrossRefPubMed Cleator SJ, Ahamed E, Coombes RC, Palmieri C. A 2009 update on the treatment of patients with hormone receptor-positive breast cancer. Clin Breast Cancer. 2009;9 Suppl 1:S6–17.CrossRefPubMed
13.
go back to reference Sorlie T, Wang Y, Xiao C, Johnsen H, Naume B, Samaha RR, et al. Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics. 2006;7:127.CrossRefPubMedPubMedCentral Sorlie T, Wang Y, Xiao C, Johnsen H, Naume B, Samaha RR, et al. Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics. 2006;7:127.CrossRefPubMedPubMedCentral
14.
go back to reference Carey LA. Through a glass darkly: advances in understanding breast cancer biology, 2000–2010. Clin Breast Cancer. 2010;10(3):188–95.CrossRefPubMed Carey LA. Through a glass darkly: advances in understanding breast cancer biology, 2000–2010. Clin Breast Cancer. 2010;10(3):188–95.CrossRefPubMed
15.
go back to reference Flanagan JM, Munoz-Alegre M, Henderson S, Tang T, Sun P, Johnson N, et al. Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Human Molecular Genetics. 2009;18(7):1332–42.CrossRefPubMedPubMedCentral Flanagan JM, Munoz-Alegre M, Henderson S, Tang T, Sun P, Johnson N, et al. Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Human Molecular Genetics. 2009;18(7):1332–42.CrossRefPubMedPubMedCentral
16.
go back to reference Zemach A, Zilberman D. Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Curr Biol. 2010;20(17):R780–5.CrossRefPubMed Zemach A, Zilberman D. Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Curr Biol. 2010;20(17):R780–5.CrossRefPubMed
17.
go back to reference Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genetics. 2007;39(1):61–9.CrossRefPubMed Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genetics. 2007;39(1):61–9.CrossRefPubMed
18.
go back to reference Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916–9.CrossRefPubMed Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916–9.CrossRefPubMed
19.
go back to reference Aran D, Toperoff G, Rosenberg M, Hellman A. Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet. 2011;20(4):670–80.CrossRefPubMed Aran D, Toperoff G, Rosenberg M, Hellman A. Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet. 2011;20(4):670–80.CrossRefPubMed
20.
go back to reference Tost J. DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Molecular Biotechnology. 2010;44(1):71–81.CrossRefPubMed Tost J. DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Molecular Biotechnology. 2010;44(1):71–81.CrossRefPubMed
21.
go back to reference Royo JL, Hidalgo M, Ruiz A. Pyrosequencing protocol using a universal biotinylated primer for mutation detection and SNP genotyping. Nature Protocols. 2007;2(7):1734–9.CrossRefPubMed Royo JL, Hidalgo M, Ruiz A. Pyrosequencing protocol using a universal biotinylated primer for mutation detection and SNP genotyping. Nature Protocols. 2007;2(7):1734–9.CrossRefPubMed
22.
go back to reference Madureira PA, Varshochi R, Constantinidou D, Francis RE, Coombes RC, Yao KM, et al. The Forkhead box M1 protein regulates the transcription of the estrogen receptor alpha in breast cancer cells. J Biol Chem. 2006;281(35):25167–76.CrossRefPubMed Madureira PA, Varshochi R, Constantinidou D, Francis RE, Coombes RC, Yao KM, et al. The Forkhead box M1 protein regulates the transcription of the estrogen receptor alpha in breast cancer cells. J Biol Chem. 2006;281(35):25167–76.CrossRefPubMed
23.
go back to reference Chan TA, Glockner S, Yi JM, Chen W, Van Neste L, Cope L, et al. Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis. PLoS Med. 2008;5(5):e114.CrossRefPubMedPubMedCentral Chan TA, Glockner S, Yi JM, Chen W, Van Neste L, Cope L, et al. Convergence of mutation and epigenetic alterations identifies common genes in cancer that predict for poor prognosis. PLoS Med. 2008;5(5):e114.CrossRefPubMedPubMedCentral
24.
go back to reference Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther. 2009;8(6):1579–88.CrossRefPubMedPubMedCentral Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther. 2009;8(6):1579–88.CrossRefPubMedPubMedCentral
25.
go back to reference Feinberg A, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.CrossRefPubMed Feinberg A, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.CrossRefPubMed
26.
go back to reference Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26(4):577–90.CrossRefPubMedPubMedCentral Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26(4):577–90.CrossRefPubMedPubMedCentral
27.
go back to reference Kulis M, Queiros AC, Beekman R, Martin-Subero JI. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim Biophys Acta. 2013;1829(11):1161–74.CrossRefPubMed Kulis M, Queiros AC, Beekman R, Martin-Subero JI. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim Biophys Acta. 2013;1829(11):1161–74.CrossRefPubMed
28.
go back to reference Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD, et al. Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci USA. 2010;107(43):18729–34.CrossRefPubMedPubMedCentral Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD, et al. Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci USA. 2010;107(43):18729–34.CrossRefPubMedPubMedCentral
29.
go back to reference Maunakea AK, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 2013;23(11):1256–69.CrossRefPubMedPubMedCentral Maunakea AK, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 2013;23(11):1256–69.CrossRefPubMedPubMedCentral
30.
go back to reference Schor IE, Fiszbein A, Petrillo E, Kornblihtt AR. Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation. Embo J. 2013;32(16):2264–74.CrossRefPubMedPubMedCentral Schor IE, Fiszbein A, Petrillo E, Kornblihtt AR. Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation. Embo J. 2013;32(16):2264–74.CrossRefPubMedPubMedCentral
31.
go back to reference Lorincz M, Dickerson D, Schmitt M, Groudine M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol. 2004;11(11):1068–75.CrossRefPubMed Lorincz M, Dickerson D, Schmitt M, Groudine M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol. 2004;11(11):1068–75.CrossRefPubMed
32.
go back to reference Pleyer L, Greil R. Digging deep into “dirty” drugs - modulation of the methylation machinery. Drug Metab Rev. 2015:1–28. Pleyer L, Greil R. Digging deep into “dirty” drugs - modulation of the methylation machinery. Drug Metab Rev. 2015:1–28.
33.
go back to reference Shenker N, Flanagan JM. Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research. Br J Cancer. 2012;106(2):248–53.CrossRefPubMed Shenker N, Flanagan JM. Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research. Br J Cancer. 2012;106(2):248–53.CrossRefPubMed
34.
go back to reference Velicescu M, Weisenberger DJ, Gonzales FA, Tsai YC, Nguyen CT, Jones PA. Cell division is required for de novo methylation of CpG islands in bladder cancer cells. Cancer Res. 2002;62(8):2378–84.PubMed Velicescu M, Weisenberger DJ, Gonzales FA, Tsai YC, Nguyen CT, Jones PA. Cell division is required for de novo methylation of CpG islands in bladder cancer cells. Cancer Res. 2002;62(8):2378–84.PubMed
35.
go back to reference Kangaspeska S, Stride B, Metivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, et al. Transient cyclical methylation of promoter DNA. Nature. 2008;452(7183):112–5.CrossRefPubMed Kangaspeska S, Stride B, Metivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, et al. Transient cyclical methylation of promoter DNA. Nature. 2008;452(7183):112–5.CrossRefPubMed
36.
go back to reference Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature. 2008;452(7183):45–50.CrossRefPubMed Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature. 2008;452(7183):45–50.CrossRefPubMed
37.
38.
go back to reference Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nature Reviews Genetics. 2002;3(6):415–28.PubMed Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nature Reviews Genetics. 2002;3(6):415–28.PubMed
39.
go back to reference Feinberg AP, Tycko B. The history of cancer epigenetics. Nature Reviews Cancer. 2004;4(2):143–53.CrossRefPubMed Feinberg AP, Tycko B. The history of cancer epigenetics. Nature Reviews Cancer. 2004;4(2):143–53.CrossRefPubMed
40.
go back to reference Kanai Y. Genome-wide DNA, methylation profiles in precancerous conditions and cancers. Cancer Sci. 2010;101(1):36–45.CrossRefPubMed Kanai Y. Genome-wide DNA, methylation profiles in precancerous conditions and cancers. Cancer Sci. 2010;101(1):36–45.CrossRefPubMed
42.
go back to reference Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol. 2008;68(1):1–11.CrossRefPubMed Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol. 2008;68(1):1–11.CrossRefPubMed
43.
go back to reference Michels KB. The promises and challenges of epigenetic epidemiology. Experimental gerontology. 2010;45(4):297–301.CrossRefPubMed Michels KB. The promises and challenges of epigenetic epidemiology. Experimental gerontology. 2010;45(4):297–301.CrossRefPubMed
44.
go back to reference Huang Z, Murphy SK. Increased Intragenic IGF2 Methylation is Associated with Repression of Insulator Activity and Elevated Expression in Serous Ovarian Carcinoma. Front Oncol. 2013;3:131.PubMedPubMedCentral Huang Z, Murphy SK. Increased Intragenic IGF2 Methylation is Associated with Repression of Insulator Activity and Elevated Expression in Serous Ovarian Carcinoma. Front Oncol. 2013;3:131.PubMedPubMedCentral
45.
go back to reference Wild L, Flanagan JM. Genome-wide hypomethylation in cancer may be a passive consequence of transformation. Biochim Biophys Acta. 2010;1806(1):50–7.PubMed Wild L, Flanagan JM. Genome-wide hypomethylation in cancer may be a passive consequence of transformation. Biochim Biophys Acta. 2010;1806(1):50–7.PubMed
47.
go back to reference Hassiotou F, Geddes DT, Hartmann PE. Cells in human milk: state of the science. J Hum Lact. 2013;29(2):171–82.CrossRefPubMed Hassiotou F, Geddes DT, Hartmann PE. Cells in human milk: state of the science. J Hum Lact. 2013;29(2):171–82.CrossRefPubMed
48.
go back to reference Faupel-Badger JM, Arcaro KF, Balkam JJ, Eliassen AH, Hassiotou F, Lebrilla CB, et al. Postpartum remodeling, lactation, and breast cancer risk: summary of a National Cancer Institute-sponsored workshop. J Natl Cancer Inst. 2013;105(3):166–74.CrossRefPubMed Faupel-Badger JM, Arcaro KF, Balkam JJ, Eliassen AH, Hassiotou F, Lebrilla CB, et al. Postpartum remodeling, lactation, and breast cancer risk: summary of a National Cancer Institute-sponsored workshop. J Natl Cancer Inst. 2013;105(3):166–74.CrossRefPubMed
49.
go back to reference Gur-Dedeoglu B, Konu O, Bozkurt B, Ergul G, Seckin S, Yulug IG. Identification of endogenous reference genes for qRT-PCR analysis in normal matched breast tumor tissues. Oncol Res. 2009;17(8):353–65.CrossRefPubMed Gur-Dedeoglu B, Konu O, Bozkurt B, Ergul G, Seckin S, Yulug IG. Identification of endogenous reference genes for qRT-PCR analysis in normal matched breast tumor tissues. Oncol Res. 2009;17(8):353–65.CrossRefPubMed
50.
Metadata
Title
Transcriptional implications of intragenic DNA methylation in the oestrogen receptor alpha gene in breast cancer cells and tissues
Authors
Natalie S Shenker
Kirsty J Flower
Charlotte S Wilhelm-Benartzi
Wei Dai
Emma Bell
Edmund Gore
Mona El Bahrawy
Gillian Weaver
Robert Brown
James M Flanagan
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1335-5

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine