Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Nuclear factor I-C regulates E-cadherin via control of KLF4 in breast cancer

Authors: Hye-Kyung Lee, Dong-Seol Lee, Joo-Cheol Park

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Progression to metastasis is the leading cause of most cancer-related mortality; however, much remains to be understood about what facilitates the spread of tumor cells. In the present study, we describe a novel pathway in breast cancer that regulates epithelial-to-mesenchymal transition (EMT), motility, and invasiveness.

Methods

We examined nuclear factor I-C (NFI-C) expression in MCF10A human breast epithelial cells, MCF7 non-invasive breast cancer cells, and MDA-MB231 invasive breast cancer cells by real-time PCR and western blotting. To investigate the loss- and gain-function of NFI-C, we determined whether NFI-C regulated KLF4 expression by real-time PCR, western blotting, and promoter assay. To understand the biological functions of NFI-C, we observed cell invasion, migration, adhesion in human tumor cells by transwell assay, wound healing assay, quantitative RT-PCR, cell adhesion assay, western blotting, and immunohistochemistry.

Results

We identified the downstream factors of NFI-C, such as KLF4 and E-cadherin, which play roles in EMT. NFI-C is expressed in normal mammary gland or noninvasive breast cancer cells with epithelial characteristics. NFI-C overexpression induced expression of KLF4 and E-cadherin, but not Slug, in breast cancer cells. NFI-C bound directly to the KLF4 promoter and stimulated KLF4 transcriptional activity, thereby regulating E-cadherin expression during tumorigenesis. Cells overexpressing NFI-C maintained their epithelial differentiation status, which could drive mesenchymal-epithelial transition (MET) via the NFI-C-KLF4-E-cadherin axis in breast cancer cells. Consequently, NFI-C suppressed EMT, migration, and invasion in breast cancer cells.

Conclusions

Our study reveals a novel signaling pathway that is important during breast cancer tumorigenesis: the NFI-C-KLF4-E-cadherin pathway. The results indicate the important role of NFI-C in regulating KLF4 during tumorigenesis.
Literature
2.
go back to reference Shields JM, Christy RJ, Yang VW. Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem. 1996;271(33):20009–17.CrossRefPubMedPubMedCentral Shields JM, Christy RJ, Yang VW. Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem. 1996;271(33):20009–17.CrossRefPubMedPubMedCentral
3.
go back to reference Ohnishi S, Ohnami S, Laub F, Aoki K, Suzuki K, Kanai Y, et al. Downregulation and growth inhibitory effect of epithelial-type Kruppel-like transcription factor KLF4, but not KLF5, in bladder cancer. Biochem Biophys Res Commun. 2003;308(2):251–6.CrossRefPubMed Ohnishi S, Ohnami S, Laub F, Aoki K, Suzuki K, Kanai Y, et al. Downregulation and growth inhibitory effect of epithelial-type Kruppel-like transcription factor KLF4, but not KLF5, in bladder cancer. Biochem Biophys Res Commun. 2003;308(2):251–6.CrossRefPubMed
4.
go back to reference Wei D, Gong W, Kanai M, Schlunk C, Wang L, Yao JC, et al. Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res. 2005;65(7):2746–54.CrossRefPubMed Wei D, Gong W, Kanai M, Schlunk C, Wang L, Yao JC, et al. Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res. 2005;65(7):2746–54.CrossRefPubMed
5.
go back to reference Zhao W, Hisamuddin IM, Nandan MO, Babbin BA, Lamb NE, Yang VW. Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene. 2004;23(2):395–402.CrossRefPubMedPubMedCentral Zhao W, Hisamuddin IM, Nandan MO, Babbin BA, Lamb NE, Yang VW. Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene. 2004;23(2):395–402.CrossRefPubMedPubMedCentral
6.
go back to reference Akaogi K, Nakajima Y, Ito I, Kawasaki S, Oie SH, Murayama A, et al. KLF4 suppresses estrogen-dependent breast cancer growth by inhibiting the transcriptional activity of ERalpha. Oncogene. 2009;28(32):2894–902.CrossRefPubMed Akaogi K, Nakajima Y, Ito I, Kawasaki S, Oie SH, Murayama A, et al. KLF4 suppresses estrogen-dependent breast cancer growth by inhibiting the transcriptional activity of ERalpha. Oncogene. 2009;28(32):2894–902.CrossRefPubMed
7.
go back to reference Rowland BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol. 2005;7(11):1074–82.CrossRefPubMed Rowland BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol. 2005;7(11):1074–82.CrossRefPubMed
8.
go back to reference Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.CrossRefPubMed Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.CrossRefPubMed
9.
go back to reference Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448(7151):318–24.CrossRefPubMed Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448(7151):318–24.CrossRefPubMed
10.
go back to reference Yori JL, Johnson E, Zhou G, Jain MK, Keri RA. Kruppel-like factor 4 inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression. J Biol Chem. 2010;285(22):16854–63.CrossRefPubMedPubMedCentral Yori JL, Johnson E, Zhou G, Jain MK, Keri RA. Kruppel-like factor 4 inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression. J Biol Chem. 2010;285(22):16854–63.CrossRefPubMedPubMedCentral
11.
go back to reference Gronostajski RM. Roles of the NFI/CTF gene family in transcription and development. Gene. 2000;249(1–2):31–45.CrossRefPubMed Gronostajski RM. Roles of the NFI/CTF gene family in transcription and development. Gene. 2000;249(1–2):31–45.CrossRefPubMed
12.
go back to reference Nilsson J, Bjursell G, Kannius-Janson M. Nuclear Jak2 and transcription factor NF1-C2: a novel mechanism of prolactin signaling in mammary epithelial cells. Mol Cell Biol. 2006;26(15):5663–74.CrossRefPubMedPubMedCentral Nilsson J, Bjursell G, Kannius-Janson M. Nuclear Jak2 and transcription factor NF1-C2: a novel mechanism of prolactin signaling in mammary epithelial cells. Mol Cell Biol. 2006;26(15):5663–74.CrossRefPubMedPubMedCentral
13.
go back to reference Johansson EM, Kannius-Janson M, Bjursell G, Nilsson J. The p53 tumor suppressor gene is regulated in vivo by nuclear factor 1-C2 in the mouse mammary gland during pregnancy. Oncogene. 2003;22(38):6061–70.CrossRefPubMed Johansson EM, Kannius-Janson M, Bjursell G, Nilsson J. The p53 tumor suppressor gene is regulated in vivo by nuclear factor 1-C2 in the mouse mammary gland during pregnancy. Oncogene. 2003;22(38):6061–70.CrossRefPubMed
14.
go back to reference Nilsson J, Helou K, Kovacs A, Bendahl PO, Bjursell G, Ferno M, et al. Nuclear Janus-activated kinase 2/nuclear factor 1-C2 suppresses tumorigenesis and epithelial-to-mesenchymal transition by repressing Forkhead box F1. Cancer Res. 2010;70(5):2020–9.CrossRefPubMed Nilsson J, Helou K, Kovacs A, Bendahl PO, Bjursell G, Ferno M, et al. Nuclear Janus-activated kinase 2/nuclear factor 1-C2 suppresses tumorigenesis and epithelial-to-mesenchymal transition by repressing Forkhead box F1. Cancer Res. 2010;70(5):2020–9.CrossRefPubMed
15.
go back to reference Grabowska MM, Elliott AD, DeGraff DJ, Anderson PD, Anumanthan G, Yamashita H, et al. NFI transcription factors interact with FOXA1 to regulate prostate-specific gene expression. Mol Endocrinol. 2014;28(6):949–64.CrossRefPubMedPubMedCentral Grabowska MM, Elliott AD, DeGraff DJ, Anderson PD, Anumanthan G, Yamashita H, et al. NFI transcription factors interact with FOXA1 to regulate prostate-specific gene expression. Mol Endocrinol. 2014;28(6):949–64.CrossRefPubMedPubMedCentral
16.
go back to reference Lee DS, Yoon WJ, Cho ES, Kim HJ, Gronostajski RM, Cho MI, et al. Crosstalk between nuclear factor I-C and transforming growth factor-beta1 signaling regulates odontoblast differentiation and homeostasis. PLoS One. 2011;6(12):e29160.CrossRefPubMedPubMedCentral Lee DS, Yoon WJ, Cho ES, Kim HJ, Gronostajski RM, Cho MI, et al. Crosstalk between nuclear factor I-C and transforming growth factor-beta1 signaling regulates odontoblast differentiation and homeostasis. PLoS One. 2011;6(12):e29160.CrossRefPubMedPubMedCentral
17.
go back to reference Lee HK, Lee DS, Park SJ, Cho KH, Bae HS, Park JC. Nuclear factor I-C (NFIC) Regulates Dentin Sialophosphoprotein (DSPP) and E-cadherin via Control of Kruppel-like Factor 4 (KLF4) during dentinogenesis. J Biol Chem. 2014;289(41):28225–36.CrossRefPubMedPubMedCentral Lee HK, Lee DS, Park SJ, Cho KH, Bae HS, Park JC. Nuclear factor I-C (NFIC) Regulates Dentin Sialophosphoprotein (DSPP) and E-cadherin via Control of Kruppel-like Factor 4 (KLF4) during dentinogenesis. J Biol Chem. 2014;289(41):28225–36.CrossRefPubMedPubMedCentral
19.
go back to reference Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.CrossRefPubMedPubMedCentral Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.CrossRefPubMedPubMedCentral
20.
go back to reference Lee DS, Park JT, Kim HM, Ko JS, Son HH, Gronostajski RM, et al. Nuclear factor I-C is essential for odontogenic cell proliferation and odontoblast differentiation during tooth root development. J Biol Chem. 2009;284(25):17293–303.CrossRefPubMedPubMedCentral Lee DS, Park JT, Kim HM, Ko JS, Son HH, Gronostajski RM, et al. Nuclear factor I-C is essential for odontogenic cell proliferation and odontoblast differentiation during tooth root development. J Biol Chem. 2009;284(25):17293–303.CrossRefPubMedPubMedCentral
21.
go back to reference Girchev R, Markova P, Vuchidolova V. Influence of nonselective ET(A)/ET(B) receptor blockade on renal function in conscious rats: effects of renal denervation. J Physiol Pharmacol. 2004;55(2):381–9.PubMed Girchev R, Markova P, Vuchidolova V. Influence of nonselective ET(A)/ET(B) receptor blockade on renal function in conscious rats: effects of renal denervation. J Physiol Pharmacol. 2004;55(2):381–9.PubMed
22.
go back to reference Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol. 1994;127(6 Pt 2):2021–36.CrossRefPubMed Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol. 1994;127(6 Pt 2):2021–36.CrossRefPubMed
24.
go back to reference Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.CrossRefPubMed Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.CrossRefPubMed
25.
go back to reference Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005;132(14):3151–61.CrossRefPubMed Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005;132(14):3151–61.CrossRefPubMed
26.
go back to reference Liu YN, Abou-Kheir W, Yin JJ, Fang L, Hynes P, Casey O, et al. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor beta-initiated prostate cancer epithelial-mesenchymal transition. Mol Cell Biol. 2012;32(5):941–53.CrossRefPubMedPubMedCentral Liu YN, Abou-Kheir W, Yin JJ, Fang L, Hynes P, Casey O, et al. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor beta-initiated prostate cancer epithelial-mesenchymal transition. Mol Cell Biol. 2012;32(5):941–53.CrossRefPubMedPubMedCentral
27.
go back to reference Taylor MA, Parvani JG, Schiemann WP. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia. 2010;15(2):169–90.CrossRefPubMedPubMedCentral Taylor MA, Parvani JG, Schiemann WP. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia. 2010;15(2):169–90.CrossRefPubMedPubMedCentral
28.
go back to reference Vincent-Salomon A, Thiery JP. Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res. 2003;5(2):101–6.CrossRefPubMedPubMedCentral Vincent-Salomon A, Thiery JP. Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res. 2003;5(2):101–6.CrossRefPubMedPubMedCentral
29.
go back to reference Brun M, Coles JE, Monckton EA, Glubrecht DD, Bisgrove D, Godbout R. Nuclear factor I regulates brain fatty acid-binding protein and glial fibrillary acidic protein gene expression in malignant glioma cell lines. J Mol Biol. 2009;391(2):282–300.CrossRefPubMed Brun M, Coles JE, Monckton EA, Glubrecht DD, Bisgrove D, Godbout R. Nuclear factor I regulates brain fatty acid-binding protein and glial fibrillary acidic protein gene expression in malignant glioma cell lines. J Mol Biol. 2009;391(2):282–300.CrossRefPubMed
30.
go back to reference Chaudhry AZ, Vitullo AD, Gronostajski RM. Nuclear factor I-mediated repression of the mouse mammary tumor virus promoter is abrogated by the coactivators p300/CBP and SRC-1. J Biol Chem. 1999;274(11):7072–81.CrossRefPubMed Chaudhry AZ, Vitullo AD, Gronostajski RM. Nuclear factor I-mediated repression of the mouse mammary tumor virus promoter is abrogated by the coactivators p300/CBP and SRC-1. J Biol Chem. 1999;274(11):7072–81.CrossRefPubMed
31.
go back to reference Schuur ER, Kruse U, Iacovoni JS, Vogt PK. Nuclear factor I interferes with transformation induced by nuclear oncogenes. Cell Growth Differ. 1995;6(3):219–27.PubMed Schuur ER, Kruse U, Iacovoni JS, Vogt PK. Nuclear factor I interferes with transformation induced by nuclear oncogenes. Cell Growth Differ. 1995;6(3):219–27.PubMed
32.
go back to reference Baum B, Settleman J, Quinlan MP. Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol. 2008;19(3):294–308.CrossRefPubMed Baum B, Settleman J, Quinlan MP. Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol. 2008;19(3):294–308.CrossRefPubMed
33.
go back to reference Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.CrossRefPubMed Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.CrossRefPubMed
34.
go back to reference Li R, Liang J, Ni S, Zhou T, Qing X, Li H, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell. 2010;7(1):51–63.CrossRefPubMed Li R, Liang J, Ni S, Zhou T, Qing X, Li H, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell. 2010;7(1):51–63.CrossRefPubMed
35.
go back to reference Tiwari N, Meyer-Schaller N, Arnold P, Antoniadis H, Pachkov M, van Nimwegen E, et al. Klf4 is a transcriptional regulator of genes critical for EMT, including Jnk1 (Mapk8). PLoS One. 2013;8(2):e57329.CrossRefPubMedPubMedCentral Tiwari N, Meyer-Schaller N, Arnold P, Antoniadis H, Pachkov M, van Nimwegen E, et al. Klf4 is a transcriptional regulator of genes critical for EMT, including Jnk1 (Mapk8). PLoS One. 2013;8(2):e57329.CrossRefPubMedPubMedCentral
36.
go back to reference Heymann R, About I, Lendahl U, Franquin JC, Obrink B, Mitsiadis TA. E- and N-cadherin distribution in developing and functional human teeth under normal and pathological conditions. Am J Pathol. 2002;160(6):2123–33.CrossRefPubMedPubMedCentral Heymann R, About I, Lendahl U, Franquin JC, Obrink B, Mitsiadis TA. E- and N-cadherin distribution in developing and functional human teeth under normal and pathological conditions. Am J Pathol. 2002;160(6):2123–33.CrossRefPubMedPubMedCentral
37.
go back to reference Iida K, Takeda-Kawaguchi T, Hada M, Yuriguchi M, Aoki H, Tamaoki N, et al. Hypoxia-enhanced derivation of iPSCs from human dental pulp cells. J Dent Res. 2013;92(10):905–10.CrossRefPubMed Iida K, Takeda-Kawaguchi T, Hada M, Yuriguchi M, Aoki H, Tamaoki N, et al. Hypoxia-enhanced derivation of iPSCs from human dental pulp cells. J Dent Res. 2013;92(10):905–10.CrossRefPubMed
38.
go back to reference Chaudhry AZ, Vitullo AD, Gronostajski RM. Nuclear factor I (NFI) isoforms differentially activate simple versus complex NFI-responsive promoters. J Biol Chem. 1998;273(29):18538–46.CrossRefPubMed Chaudhry AZ, Vitullo AD, Gronostajski RM. Nuclear factor I (NFI) isoforms differentially activate simple versus complex NFI-responsive promoters. J Biol Chem. 1998;273(29):18538–46.CrossRefPubMed
Metadata
Title
Nuclear factor I-C regulates E-cadherin via control of KLF4 in breast cancer
Authors
Hye-Kyung Lee
Dong-Seol Lee
Joo-Cheol Park
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1118-z

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine