Skip to main content
Top
Published in: BMC Pregnancy and Childbirth 1/2019

Open Access 01-12-2019 | Research article

The effects of vigorous intensity exercise in the third trimester of pregnancy: a systematic review and meta-analysis

Authors: Kassia S. Beetham, Courtney Giles, Michael Noetel, Vicki Clifton, Jacqueline C. Jones, Geraldine Naughton

Published in: BMC Pregnancy and Childbirth | Issue 1/2019

Login to get access

Abstract

Background

Fetal growth is dependent upon utero-placental vascular supply of oxygen and nutrients from the mother and has been proposed to be compromised by vigorous intensity exercise in the third trimester. The aim of this systematic review was to investigate the effects of vigorous intensity exercise performed throughout pregnancy, on infant and maternal outcomes.

Methods

Electronic searching of the PubMed, Medline, EMBASE, Cochrane Library, Web of Science and CINAHL databases was used to conduct the search up to November 2018. Study designs included in the systematic review were randomised control trials, quasi-experimental studies, cohort studies and case-control studies. The studies were required to include an intervention or report of pregnant women performing vigorous exercise during gestation, with a comparator group of either lower intensity exercise or standard care.

Results

Ten cohort studies (n = 32,080) and five randomized control trials (n = 623) were included in the systematic review (n = 15), with 13 studies included in the meta-analysis. No significant difference existed in birthweight for infants of mothers who engaged in vigorous physical activity and those who lacked this exposure (mean difference = 8.06 g, n = 8006). Moreover, no significant increase existed in risk of small for gestational age (risk ratio = 0.15, n = 4504), risk of low birth weight (< 2500 g) (risk ratio = 0.44, n = 2454) or maternal weight gain (mean difference = − 0.46 kg, n = 1834). Women who engaged in vigorous physical activity had a small but significant increase in length of gestational age before delivery (mean difference = 0.21 weeks, n = 4281) and a small but significantly reduced risk of prematurity (risk ratio = − 0.20, n = 3025).

Conclusions

Findings from this meta-analysis indicate that vigorous intensity exercise completed into the third trimester appears to be safe for most healthy pregnancies. Further research is needed on the effects of vigorous intensity exercise in the first and second trimester, and of exercise intensity exceeding 90% of maximum heart rate.

Trial registration

PROSPERO trial registration CRD42018102109.
Appendix
Available only for authorised users
Literature
1.
go back to reference Di Mascio D, Magro-Malosso ER, Saccone G, Marhefka GD, Berghella V. Exercise during pregnancy in normal-weight women and risk of preterm birth: a systematic review and meta-analysis of randomized controlled trials. Am J Obstet Gynecol. 2016;215(5):561–71.CrossRef Di Mascio D, Magro-Malosso ER, Saccone G, Marhefka GD, Berghella V. Exercise during pregnancy in normal-weight women and risk of preterm birth: a systematic review and meta-analysis of randomized controlled trials. Am J Obstet Gynecol. 2016;215(5):561–71.CrossRef
2.
go back to reference Daley AJ, Foster L, Long G, Palmer C, Robinson O, Walmsley H, et al. The effectiveness of exercise for the prevention and treatment of antenatal depression: systematic review with meta-analysis. BJOG. 2015;122(1):57–62.CrossRef Daley AJ, Foster L, Long G, Palmer C, Robinson O, Walmsley H, et al. The effectiveness of exercise for the prevention and treatment of antenatal depression: systematic review with meta-analysis. BJOG. 2015;122(1):57–62.CrossRef
3.
go back to reference Poyatos-León R, García-Hermoso A, Sanabria-Martínez G, Álvarez-Bueno C, Cavero-Redondo I, Martínez-Vizcaíno V. Effects of exercise-based interventions on postpartum depression: a meta-analysis of randomized controlled trials. Birth. 2017;44(3):200–8.CrossRef Poyatos-León R, García-Hermoso A, Sanabria-Martínez G, Álvarez-Bueno C, Cavero-Redondo I, Martínez-Vizcaíno V. Effects of exercise-based interventions on postpartum depression: a meta-analysis of randomized controlled trials. Birth. 2017;44(3):200–8.CrossRef
4.
go back to reference Jukic AMZ, Evenson KR, Daniels JL, Herring AH, Wilcox AJ, Hartmann KE. A prospective study of the association between vigorous physical activity during pregnancy and length of gestation and birthweight. Matern Child Health J. 2012;16(5):1031–44.CrossRef Jukic AMZ, Evenson KR, Daniels JL, Herring AH, Wilcox AJ, Hartmann KE. A prospective study of the association between vigorous physical activity during pregnancy and length of gestation and birthweight. Matern Child Health J. 2012;16(5):1031–44.CrossRef
5.
go back to reference Petrov Fieril K, Glantz A, Fagevik OM. The efficacy of moderate-to- vigorous resistance exercise during pregnancy: a randomized controlled trial. Acta Obstet Gynecol Scand. 2015;94(1):35–42.CrossRef Petrov Fieril K, Glantz A, Fagevik OM. The efficacy of moderate-to- vigorous resistance exercise during pregnancy: a randomized controlled trial. Acta Obstet Gynecol Scand. 2015;94(1):35–42.CrossRef
6.
go back to reference Duncombe D, Skouteris H, Wertheim EH, Kelly L, Fraser V, Paxton SJ. Vigorous exercise and birth outcomes in a sample of recreational exercisers: a prospective study across pregnancy. Aust N Z J Obstet Gynaecol. 2006;46(4):288–92.CrossRef Duncombe D, Skouteris H, Wertheim EH, Kelly L, Fraser V, Paxton SJ. Vigorous exercise and birth outcomes in a sample of recreational exercisers: a prospective study across pregnancy. Aust N Z J Obstet Gynaecol. 2006;46(4):288–92.CrossRef
7.
go back to reference Bisson M, Croteau J, Guinhouya BC, Bujold E, Audibert F, Fraser WD, et al. Physical activity during pregnancy and infant’s birth weight: results from the 3D Birth Cohort. BMJ Open Sport Exerc Med. 2017;3:e000242.CrossRef Bisson M, Croteau J, Guinhouya BC, Bujold E, Audibert F, Fraser WD, et al. Physical activity during pregnancy and infant’s birth weight: results from the 3D Birth Cohort. BMJ Open Sport Exerc Med. 2017;3:e000242.CrossRef
8.
go back to reference Gollenberg A, Pekow P, Bertone-Johnson E, Freedson P, Markenson G, Chasan-Taber L. Physical activity and risk of small-for-gestational-age birth among predominantly Puerto Rican women. Matern Child Health J. 2011;15(1):49–59.CrossRef Gollenberg A, Pekow P, Bertone-Johnson E, Freedson P, Markenson G, Chasan-Taber L. Physical activity and risk of small-for-gestational-age birth among predominantly Puerto Rican women. Matern Child Health J. 2011;15(1):49–59.CrossRef
9.
go back to reference Bell R. The effects of vigorous exercise during pregnancy on birth weight. J Sci Med Sport. 2002;5(1):32–6.CrossRef Bell R. The effects of vigorous exercise during pregnancy on birth weight. J Sci Med Sport. 2002;5(1):32–6.CrossRef
10.
go back to reference Zamudio S, Torricos T, Fik E, Oyala M, Echalar L, Pullockaran J, et al. Hypoglycemia and the origin of hypoxia-induced reduction in human fetal growth. PLoS One. 2010;5(1):e8551.CrossRef Zamudio S, Torricos T, Fik E, Oyala M, Echalar L, Pullockaran J, et al. Hypoglycemia and the origin of hypoxia-induced reduction in human fetal growth. PLoS One. 2010;5(1):e8551.CrossRef
11.
go back to reference Szymanski LM, Satin AJ. Strenuous exercise during pregnancy: is there a limit? Am J Obstet Gynecol. 2012;207(3):179.e1–6.CrossRef Szymanski LM, Satin AJ. Strenuous exercise during pregnancy: is there a limit? Am J Obstet Gynecol. 2012;207(3):179.e1–6.CrossRef
12.
go back to reference Newton ER, May L. Adaptation of maternal-fetal physiology to exercise in pregnancy: The Basis of Guidelines for Physical Activity in Pregnancy. Clin Med Insights Womens Health. 2017;10:1179562X17693224–179562X.PubMedPubMedCentral Newton ER, May L. Adaptation of maternal-fetal physiology to exercise in pregnancy: The Basis of Guidelines for Physical Activity in Pregnancy. Clin Med Insights Womens Health. 2017;10:1179562X17693224–179562X.PubMedPubMedCentral
13.
go back to reference Sussman D, Lye SJ, Wells GD. Impact of maternal physical activity on fetal breathing and body movement—a review. Early Hum Dev. 2016;94:53–6.CrossRef Sussman D, Lye SJ, Wells GD. Impact of maternal physical activity on fetal breathing and body movement—a review. Early Hum Dev. 2016;94:53–6.CrossRef
15.
go back to reference Norton K, Norton L, Sadgrove D. Position statement on physical activity and exercise intensity terminology. J Sci Med Sport. 2010;13(5):496–502.CrossRef Norton K, Norton L, Sadgrove D. Position statement on physical activity and exercise intensity terminology. J Sci Med Sport. 2010;13(5):496–502.CrossRef
16.
go back to reference Hegaard HK, Damm P, Hedegaard M, Henriksen TB, Ottesen B, Dykes A-K, et al. Sports and leisure time physical activity during pregnancy in nulliparous women. Matern Child Health J. 2011;15(6):806–13.CrossRef Hegaard HK, Damm P, Hedegaard M, Henriksen TB, Ottesen B, Dykes A-K, et al. Sports and leisure time physical activity during pregnancy in nulliparous women. Matern Child Health J. 2011;15(6):806–13.CrossRef
17.
go back to reference Mottola MF, Davenport MH, Brun CR, Inglis SD, Charlesworth S, Sopper MM. V̇O2peak prediction and exercise prescription for pregnant women. Med Sci Sports Exerc. 2006;38(8):1389–95.CrossRef Mottola MF, Davenport MH, Brun CR, Inglis SD, Charlesworth S, Sopper MM. V̇O2peak prediction and exercise prescription for pregnant women. Med Sci Sports Exerc. 2006;38(8):1389–95.CrossRef
18.
go back to reference Mottola MF, Davenport MH, Ruchat S-M, Davies GA, Poitras VJ, Gray CE, et al. 2019 Canadian guideline for physical activity throughout pregnancy. Br J Sports Med. 2018;52(21):1339–46.CrossRef Mottola MF, Davenport MH, Ruchat S-M, Davies GA, Poitras VJ, Gray CE, et al. 2019 Canadian guideline for physical activity throughout pregnancy. Br J Sports Med. 2018;52(21):1339–46.CrossRef
20.
go back to reference Zavorsky GS, Longo LD. Adding strength training, exercise intensity, and caloric expenditure to exercise guidelines in pregnancy. Obstet Gynecol. 2011;117(6):1399–402.CrossRef Zavorsky GS, Longo LD. Adding strength training, exercise intensity, and caloric expenditure to exercise guidelines in pregnancy. Obstet Gynecol. 2011;117(6):1399–402.CrossRef
21.
go back to reference Ehrlich SF, Sternfeld B, Krefman AE, Hedderson MM, Brown SD, Mevi A, et al. Moderate and vigorous intensity exercise during pregnancy and gestational weight gain in women with gestational diabetes. Matern Child Health J. 2016;20(6):1247–57.CrossRef Ehrlich SF, Sternfeld B, Krefman AE, Hedderson MM, Brown SD, Mevi A, et al. Moderate and vigorous intensity exercise during pregnancy and gestational weight gain in women with gestational diabetes. Matern Child Health J. 2016;20(6):1247–57.CrossRef
22.
go back to reference Clapp JF, Kim H, Burciu B, Schmidt S, Petry K, Lopez B. Continuing regular exercise during pregnancy: effect of exercise volume on fetoplacental growth. Am J Obstet Gynecol. 2002;186(1):142–7.CrossRef Clapp JF, Kim H, Burciu B, Schmidt S, Petry K, Lopez B. Continuing regular exercise during pregnancy: effect of exercise volume on fetoplacental growth. Am J Obstet Gynecol. 2002;186(1):142–7.CrossRef
23.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.CrossRef
24.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.CrossRef Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.CrossRef
25.
go back to reference Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature review. Ann Nutr Metab. 2015;66(Suppl 2):14–20.CrossRef Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature review. Ann Nutr Metab. 2015;66(Suppl 2):14–20.CrossRef
26.
go back to reference Queensland Health. Term small for gestational age baby. Maternity and Neonatal Clinical Guidelines; 2016. p. 4. Queensland Health. Term small for gestational age baby. Maternity and Neonatal Clinical Guidelines; 2016. p. 4.
27.
go back to reference Vardaxis NJ, Harris P, Nagy S. Mosby’s dictionary of medicine, nursing & health professions. Sydney: Elsevier Mosby Australia; 2014. Third Australian and New Zealand edition Vardaxis NJ, Harris P, Nagy S. Mosby’s dictionary of medicine, nursing & health professions. Sydney: Elsevier Mosby Australia; 2014. Third Australian and New Zealand edition
28.
go back to reference Rasmussen KM, Yaktine AL. Descriptive Epidemiology and Trends. In: Weight Gain During Pregnancy: Reexamining the Guidelines. Washington: National Academies Press; 2009. p. 25–70. Rasmussen KM, Yaktine AL. Descriptive Epidemiology and Trends. In: Weight Gain During Pregnancy: Reexamining the Guidelines. Washington: National Academies Press; 2009. p. 25–70.
29.
go back to reference Ruchat HS-M, Davenport MM, Giroux SI, Hillier FM, Batada FA, Sopper FM, et al. Nutrition and exercise reduce excessive weight gain in normal-weight pregnant women. Med Sci Sports Exerc. 2012a;44(8):1419–26.CrossRef Ruchat HS-M, Davenport MM, Giroux SI, Hillier FM, Batada FA, Sopper FM, et al. Nutrition and exercise reduce excessive weight gain in normal-weight pregnant women. Med Sci Sports Exerc. 2012a;44(8):1419–26.CrossRef
30.
go back to reference Ruchat SM, Davenport MH, Hillier I, Batada A, Sopper J, Hammond M, et al. Walking program of low or vigorous intensity during pregnancy confers an aerobic benefit. Int J Sports Med. 2012b;33(8):661–6.CrossRef Ruchat SM, Davenport MH, Hillier I, Batada A, Sopper J, Hammond M, et al. Walking program of low or vigorous intensity during pregnancy confers an aerobic benefit. Int J Sports Med. 2012b;33(8):661–6.CrossRef
31.
go back to reference Bisson M, Almeras N, Dufresne SS, Robitaille J, Rheaume C, Bujold E, et al. A 12-week exercise program for pregnant women with obesity to improve physical activity levels: An open randomised preliminary study. PLoS One. 2015;10(9):e0137742.CrossRef Bisson M, Almeras N, Dufresne SS, Robitaille J, Rheaume C, Bujold E, et al. A 12-week exercise program for pregnant women with obesity to improve physical activity levels: An open randomised preliminary study. PLoS One. 2015;10(9):e0137742.CrossRef
32.
go back to reference Cavalcante Sergio R, Cecatti Jose G, Pereira Rosa I, Baciuk Erica P, Bernardo Ana L, Silveira C. Water aerobics II: maternal body composition and perinatal outcomes after a program for low risk pregnant women. Reprod Health. 2009;6(1):1.CrossRef Cavalcante Sergio R, Cecatti Jose G, Pereira Rosa I, Baciuk Erica P, Bernardo Ana L, Silveira C. Water aerobics II: maternal body composition and perinatal outcomes after a program for low risk pregnant women. Reprod Health. 2009;6(1):1.CrossRef
33.
go back to reference Hopkins SA, Baldi JC, Cutfield WS, McCowan L, Hofman PL. Exercise training in pregnancy reduces offspring size without changes in maternal insulin sensitivity. J Clin Endocrinol Metab. 2010;95(5):2080–8.CrossRef Hopkins SA, Baldi JC, Cutfield WS, McCowan L, Hofman PL. Exercise training in pregnancy reduces offspring size without changes in maternal insulin sensitivity. J Clin Endocrinol Metab. 2010;95(5):2080–8.CrossRef
34.
go back to reference Wang C, Wei Y, Zhang X, Zhang Y, Xu Q, Sun Y, et al. A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women. Am J Obstet Gynecol. 2017;216(4):340–51.CrossRef Wang C, Wei Y, Zhang X, Zhang Y, Xu Q, Sun Y, et al. A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women. Am J Obstet Gynecol. 2017;216(4):340–51.CrossRef
35.
go back to reference Bell RJ, Palma SM, Lumley JM. The effect of vigorous exercise during pregnancy on birth-weight. Aust N Z J Obstet Gynaecol. 1995;35(1):46–51.CrossRef Bell RJ, Palma SM, Lumley JM. The effect of vigorous exercise during pregnancy on birth-weight. Aust N Z J Obstet Gynaecol. 1995;35(1):46–51.CrossRef
36.
go back to reference Collings C, Curet L, Mullin J. Maternal and fetal responses to a maternal aerobic exercise program. Am J Obstet Gynecol. 1983;145(6):702–7.CrossRef Collings C, Curet L, Mullin J. Maternal and fetal responses to a maternal aerobic exercise program. Am J Obstet Gynecol. 1983;145(6):702–7.CrossRef
37.
go back to reference Magann EF, Evans SF, Weitz B, Newnham J. Antepartum, intrapartum, and neonatal significance of exercise on healthy low-risk pregnant working women. Obstet Gynecol. 2002;99(3):466–72.PubMed Magann EF, Evans SF, Weitz B, Newnham J. Antepartum, intrapartum, and neonatal significance of exercise on healthy low-risk pregnant working women. Obstet Gynecol. 2002;99(3):466–72.PubMed
38.
go back to reference Hegaard HK, Petersson K, Hedegaard M, Ottesen B, Dykes AK, Henriksen TB, et al. Sports and leisure-time physical activity in pregnancy and birth weight: a population-based study. Scand J Med Sci Sports. 2010;20(1):e96–102.CrossRef Hegaard HK, Petersson K, Hedegaard M, Ottesen B, Dykes AK, Henriksen TB, et al. Sports and leisure-time physical activity in pregnancy and birth weight: a population-based study. Scand J Med Sci Sports. 2010;20(1):e96–102.CrossRef
39.
go back to reference Sternfeld B, Quesenberry CP Jr, Eskenazi B, Newman LA. Exercise during pregnancy and pregnancy outcome. Med Sci Sports Exerc. 1995;27(5):634–40.CrossRef Sternfeld B, Quesenberry CP Jr, Eskenazi B, Newman LA. Exercise during pregnancy and pregnancy outcome. Med Sci Sports Exerc. 1995;27(5):634–40.CrossRef
40.
go back to reference Rose NC, Haddow JE, Palomaki GE, Knight GJ. Self-rated physical activity level during the second trimester and pregnancy outcome. Obstet Gynecol. 1991;78(6):1078–80.PubMed Rose NC, Haddow JE, Palomaki GE, Knight GJ. Self-rated physical activity level during the second trimester and pregnancy outcome. Obstet Gynecol. 1991;78(6):1078–80.PubMed
41.
go back to reference Hall DC, Kaufmann DA. Effects of aerobic and strength conditioning on pregnancy outcomes. Am J Obstet Gynecol. 1987;157(5):1199–203.CrossRef Hall DC, Kaufmann DA. Effects of aerobic and strength conditioning on pregnancy outcomes. Am J Obstet Gynecol. 1987;157(5):1199–203.CrossRef
42.
go back to reference McCowan LME, Roberts CT, Dekker GA, Taylor RS, Chan EHY, Kenny LC, et al. Risk factors for small-for-gestational-age infants by customised birthweight centiles: data from an international prospective cohort study. BJOG. 2010;117(13):1599–607.CrossRef McCowan LME, Roberts CT, Dekker GA, Taylor RS, Chan EHY, Kenny LC, et al. Risk factors for small-for-gestational-age infants by customised birthweight centiles: data from an international prospective cohort study. BJOG. 2010;117(13):1599–607.CrossRef
43.
go back to reference Kuhrt K, Harmon M, Hezelgrave NL, Seed PT, Shennan AH. Is recreational running associated with earlier delivery and lower birth weight in women who continue to run during pregnancy? An international retrospective cohort study of running habits of 1293 female runners during pregnancy. BMJ Open Sport Exerc Med. 2018;4:e000296.CrossRef Kuhrt K, Harmon M, Hezelgrave NL, Seed PT, Shennan AH. Is recreational running associated with earlier delivery and lower birth weight in women who continue to run during pregnancy? An international retrospective cohort study of running habits of 1293 female runners during pregnancy. BMJ Open Sport Exerc Med. 2018;4:e000296.CrossRef
44.
go back to reference Zeanah M, Schlosser SP. Adherence to ACOG guidelines on exercise during pregnancy: effect on pregnancy outcome. J Obstet Gynecol Neonatal Nurs. 1993;22(4):329–35.CrossRef Zeanah M, Schlosser SP. Adherence to ACOG guidelines on exercise during pregnancy: effect on pregnancy outcome. J Obstet Gynecol Neonatal Nurs. 1993;22(4):329–35.CrossRef
45.
go back to reference Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Br Med J. 2011;343:d5928.CrossRef Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Br Med J. 2011;343:d5928.CrossRef
47.
go back to reference Ioannidis J, Patsopoulos N, Rothstein H. Reasons or excuses for avoiding meta-analysis in forest plots. Br Med J. 2008;336(7658):1413.CrossRef Ioannidis J, Patsopoulos N, Rothstein H. Reasons or excuses for avoiding meta-analysis in forest plots. Br Med J. 2008;336(7658):1413.CrossRef
48.
go back to reference Viechtbauer W. Package ‘metafor’. 2.0 ed; 2017. Viechtbauer W. Package ‘metafor’. 2.0 ed; 2017.
49.
go back to reference Team RC. R: a language and environment for statistical computing. 3.5.1 ed. Vienna: R Foundation for Statistical Computing; 2018. Team RC. R: a language and environment for statistical computing. 3.5.1 ed. Vienna: R Foundation for Statistical Computing; 2018.
50.
go back to reference Van den Noortgate W, Lopez-Lopez JA, Marin-Martinez F, Sanchez-Meca J. Meta-analysis of multiple outcomes: a multilevel approach. Behav Res Methods. 2015;47(4):1274–94.CrossRef Van den Noortgate W, Lopez-Lopez JA, Marin-Martinez F, Sanchez-Meca J. Meta-analysis of multiple outcomes: a multilevel approach. Behav Res Methods. 2015;47(4):1274–94.CrossRef
51.
go back to reference Hedges LV, Tipton E, Johnson MC. Robust variance estimation in meta-regression with dependent effect size estimates. Res Synth Methods. 2010;1(1):39–65.CrossRef Hedges LV, Tipton E, Johnson MC. Robust variance estimation in meta-regression with dependent effect size estimates. Res Synth Methods. 2010;1(1):39–65.CrossRef
52.
go back to reference Moeyaert M, Ugille M, Natasha Beretvas S, Ferron J, Bunuan R, Van den Noortgate W. Methods for dealing with multiple outcomes in meta-analysis: a comparison between averaging effect sizes, robust variance estimation and multilevel meta-analysis. Int J Soc Res Methodol. 2017;20(6):559–72.CrossRef Moeyaert M, Ugille M, Natasha Beretvas S, Ferron J, Bunuan R, Van den Noortgate W. Methods for dealing with multiple outcomes in meta-analysis: a comparison between averaging effect sizes, robust variance estimation and multilevel meta-analysis. Int J Soc Res Methodol. 2017;20(6):559–72.CrossRef
53.
go back to reference von Hippel PT. The heterogeneity statistic I (2) can be biased in small meta-analyses. BMC Med Res Methodol. 2015;15:35.CrossRef von Hippel PT. The heterogeneity statistic I (2) can be biased in small meta-analyses. BMC Med Res Methodol. 2015;15:35.CrossRef
54.
go back to reference Madsen M, Jørgensen T, Jensen M, Juhl M, Olsen J, Andersen P, et al. Leisure time physical exercise during pregnancy and the risk of miscarriage: a study within the Danish National Birth Cohort. BJOG. 2007;114(11):1419–26.CrossRef Madsen M, Jørgensen T, Jensen M, Juhl M, Olsen J, Andersen P, et al. Leisure time physical exercise during pregnancy and the risk of miscarriage: a study within the Danish National Birth Cohort. BJOG. 2007;114(11):1419–26.CrossRef
55.
go back to reference Clapp JF, Kim H, Burciu B, Lopez B. Beginning regular exercise in early pregnancy: effect on fetoplacental growth. Am J Obstet Gynecol. 2000;183(6):1484–8.CrossRef Clapp JF, Kim H, Burciu B, Lopez B. Beginning regular exercise in early pregnancy: effect on fetoplacental growth. Am J Obstet Gynecol. 2000;183(6):1484–8.CrossRef
56.
go back to reference Rodríguez I, González M. Physiological mechanisms of vascular response induced by shear stress and effect of exercise in systemic and placental circulation. Front Pharmacol. 2014;5:209.PubMedPubMedCentral Rodríguez I, González M. Physiological mechanisms of vascular response induced by shear stress and effect of exercise in systemic and placental circulation. Front Pharmacol. 2014;5:209.PubMedPubMedCentral
57.
go back to reference Bø K, Artal R, Barakat R, Brown W, Dooley M, Evenson KR, et al. Exercise and pregnancy in recreational and elite athletes: 2016 evidence summary from the IOC expert group meeting, Lausanne. Part 2—the effect of exercise on the fetus, labour and birth. Br J Sports Med. 2016a;50(21):1297–305.CrossRef Bø K, Artal R, Barakat R, Brown W, Dooley M, Evenson KR, et al. Exercise and pregnancy in recreational and elite athletes: 2016 evidence summary from the IOC expert group meeting, Lausanne. Part 2—the effect of exercise on the fetus, labour and birth. Br J Sports Med. 2016a;50(21):1297–305.CrossRef
58.
go back to reference Jackson MR, Gott P, Lye SJ, Ritchie JW, Clapp JF 3rd. The effects of maternal aerobic exercise on human placental development: placental volumetric composition and surface areas. Placenta. 1995;16(2):179–91.CrossRef Jackson MR, Gott P, Lye SJ, Ritchie JW, Clapp JF 3rd. The effects of maternal aerobic exercise on human placental development: placental volumetric composition and surface areas. Placenta. 1995;16(2):179–91.CrossRef
59.
go back to reference Leet T, Flick L. Effect of exercise on birthweight. Clin Obstet Gynecol. 2003;46(2):423–31.CrossRef Leet T, Flick L. Effect of exercise on birthweight. Clin Obstet Gynecol. 2003;46(2):423–31.CrossRef
60.
go back to reference Wiebe HW, Boule NG, Chari R, Davenport MH. The effect of supervised prenatal exercise on fetal growth: a meta-analysis. Obstet Gynecol. 2015;125(5):1185–94.CrossRef Wiebe HW, Boule NG, Chari R, Davenport MH. The effect of supervised prenatal exercise on fetal growth: a meta-analysis. Obstet Gynecol. 2015;125(5):1185–94.CrossRef
61.
go back to reference Holt EL, Holden AV. A risk-benefit analysis of maintaining an aerobic-endurance triathlon training program during pregnancy: a review. Sci Sports. 2018;33(5):e181–e9.CrossRef Holt EL, Holden AV. A risk-benefit analysis of maintaining an aerobic-endurance triathlon training program during pregnancy: a review. Sci Sports. 2018;33(5):e181–e9.CrossRef
62.
go back to reference Takami M, Tsuchida A, Takamori A, Aoki S, Ito M, Kigawa M, et al. Effects of physical activity during pregnancy on preterm delivery and mode of delivery: the Japan environment and Children's study, birth cohort study. PLoS One. 2018;13(10):e0206160.CrossRef Takami M, Tsuchida A, Takamori A, Aoki S, Ito M, Kigawa M, et al. Effects of physical activity during pregnancy on preterm delivery and mode of delivery: the Japan environment and Children's study, birth cohort study. PLoS One. 2018;13(10):e0206160.CrossRef
63.
go back to reference Salvesen KÃ, Hem E, Sundgot-Borgen J. Fetal wellbeing may be compromised during strenuous exercise among pregnant elite athletes. Br J Sports Med. 2012;46(4):279.CrossRef Salvesen KÃ, Hem E, Sundgot-Borgen J. Fetal wellbeing may be compromised during strenuous exercise among pregnant elite athletes. Br J Sports Med. 2012;46(4):279.CrossRef
64.
go back to reference Kardel KR, Kase T. Training in pregnant women: effects on fetal development and birth. Am J Obstet Gynecol. 1998;178(2):280–6.CrossRef Kardel KR, Kase T. Training in pregnant women: effects on fetal development and birth. Am J Obstet Gynecol. 1998;178(2):280–6.CrossRef
65.
go back to reference Bø K, Artal R, Barakat R, Brown W, Davies GAL, Dooley M, et al. Exercise and pregnancy in recreational and elite athletes: 2016 evidence summary from the IOC expert group meeting, Lausanne. Part 1—exercise in women planning pregnancy and those who are pregnant. Br J Sports Med. 2016b;50(10):571.CrossRef Bø K, Artal R, Barakat R, Brown W, Davies GAL, Dooley M, et al. Exercise and pregnancy in recreational and elite athletes: 2016 evidence summary from the IOC expert group meeting, Lausanne. Part 1—exercise in women planning pregnancy and those who are pregnant. Br J Sports Med. 2016b;50(10):571.CrossRef
66.
go back to reference Elliott-Sale KJ, Barnett CT, Sale C. Exercise interventions for weight management during pregnancy and up to 1 year postpartum among normal weight, overweight and obese women: a systematic review and meta-analysis. Br J Sports Med. 2015;49(20):1336.CrossRef Elliott-Sale KJ, Barnett CT, Sale C. Exercise interventions for weight management during pregnancy and up to 1 year postpartum among normal weight, overweight and obese women: a systematic review and meta-analysis. Br J Sports Med. 2015;49(20):1336.CrossRef
67.
go back to reference Travers MJ, Murphy MC, Debenham JR, Chivers P, Bulsara MK, Bagg MK, et al. Should this systematic review and meta-analysis change my practice? Part 2: exploring the role of the comparator, diversity, risk of bias and confidence. Br J Sports Med. 2019. https://doi.org/10.1136/bjsports-2018-099959. Travers MJ, Murphy MC, Debenham JR, Chivers P, Bulsara MK, Bagg MK, et al. Should this systematic review and meta-analysis change my practice? Part 2: exploring the role of the comparator, diversity, risk of bias and confidence. Br J Sports Med. 2019. https://​doi.​org/​10.​1136/​bjsports-2018-099959.
68.
go back to reference Pivarnik JM, Szymanski LM, Conway MR. The elite athlete and strenuous exercise in pregnancy. Clin Obstet Gynecol. 2016;59(3):613–9.CrossRef Pivarnik JM, Szymanski LM, Conway MR. The elite athlete and strenuous exercise in pregnancy. Clin Obstet Gynecol. 2016;59(3):613–9.CrossRef
Metadata
Title
The effects of vigorous intensity exercise in the third trimester of pregnancy: a systematic review and meta-analysis
Authors
Kassia S. Beetham
Courtney Giles
Michael Noetel
Vicki Clifton
Jacqueline C. Jones
Geraldine Naughton
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Pregnancy and Childbirth / Issue 1/2019
Electronic ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-019-2441-1

Other articles of this Issue 1/2019

BMC Pregnancy and Childbirth 1/2019 Go to the issue