Skip to main content
Top
Published in: BMC Pregnancy and Childbirth 1/2018

Open Access 01-12-2018 | Research article

Do pregnancies reduce iron overload in HFE hemochromatosis women? results from an observational prospective study

Authors: Virginie Scotet, Philippe Saliou, Marianne Uguen, Carine L’Hostis, Marie-Christine Merour, Céline Triponey, Brigitte Chanu, Jean-Baptiste Nousbaum, Gerald Le Gac, Claude Ferec

Published in: BMC Pregnancy and Childbirth | Issue 1/2018

Login to get access

Abstract

Background

HFE hemochromatosis is an inborn error of iron metabolism linked to a defect in the regulation of hepcidin synthesis. This autosomal recessive disease typically manifests later in women than men. Although it is commonly stated that pregnancy is, with menses, one of the factors that offsets iron accumulation in women, no epidemiological study has yet supported this hypothesis. The aim of our study was to evaluate the influence of pregnancy on expression of the predominant HFE p.[Cys282Tyr];[Cys282Tyr] genotype.

Methods

One hundred and forty p.Cys282Tyr homozygous women enrolled in a phlebotomy program between 2004 and 2011 at a blood centre in western Brittany (France) were included in the study. After checking whether the disease expression was delayed in women than in men in our study, the association between pregnancy and iron overload was assessed using multivariable regression analysis.

Results

Our study confirms that women with HFE hemochromatosis were diagnosed later than men cared for during the same period (52.6 vs. 47.4 y., P < 0.001). Compared to no pregnancy, having at least one pregnancy was not associated with lower iron markers. In contrast, the amount of iron removed by phlebotomies appeared significantly higher in women who had at least one pregnancy (eβ = 1.50, P = 0.047). This relationship disappeared after adjustment for confounding factors (eβ = 1.35, P = 0.088).

Conclusions

Our study shows that pregnancy status has no impact on iron markers level, and is not in favour of pregnancy being a protective factor in progressive iron accumulation. Our results are consistent with recent experimental data suggesting that the difference in disease expression observed between men and women may be explained by other factors such as hormones.
Literature
1.
go back to reference EASL clinical practice guidelines for HFE hemochromatosis. European Association For The Study Of The Liver. J Hepatol. 2010;53:3–22. EASL clinical practice guidelines for HFE hemochromatosis. European Association For The Study Of The Liver. J Hepatol. 2010;53:3–22.
2.
go back to reference Adams P, Brissot P, Powell LW. EASL international consensus conference on haemochromatosis. J Hepatol. 2000;33:485–504.CrossRefPubMed Adams P, Brissot P, Powell LW. EASL international consensus conference on haemochromatosis. J Hepatol. 2000;33:485–504.CrossRefPubMed
3.
go back to reference Anderson GJ, McLaren GD. Iron physiology and pathophysiology in humans. New York: Humana Press; 2012. p. 697.CrossRef Anderson GJ, McLaren GD. Iron physiology and pathophysiology in humans. New York: Humana Press; 2012. p. 697.CrossRef
4.
go back to reference Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, et al. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet. 2003;361:669–73.CrossRefPubMed Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, et al. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet. 2003;361:669–73.CrossRefPubMed
5.
go back to reference Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.CrossRefPubMed Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.CrossRefPubMed
6.
7.
go back to reference Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13:399–408.CrossRefPubMed Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13:399–408.CrossRefPubMed
8.
go back to reference Bacon BR, Britton RS. Clinical penetrance of hereditary hemochromatosis. N Engl J Med. 2008;358:291–2.CrossRefPubMed Bacon BR, Britton RS. Clinical penetrance of hereditary hemochromatosis. N Engl J Med. 2008;358:291–2.CrossRefPubMed
9.
go back to reference Beutler E, Felitti VJ, Koziol JA, Ho NJ, Gelbart T. Penetrance of 845G>a (C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet. 2002;359:211–8.CrossRefPubMed Beutler E, Felitti VJ, Koziol JA, Ho NJ, Gelbart T. Penetrance of 845G>a (C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet. 2002;359:211–8.CrossRefPubMed
11.
go back to reference Allen KJ, Gurrin LC, Constantine CC, Osborne NJ, Delatycki MB, Nicoll AJ, et al. Iron-overload-related disease in HFE hereditary hemochromatosis. N Engl J Med. 2008;358:221–30.CrossRefPubMed Allen KJ, Gurrin LC, Constantine CC, Osborne NJ, Delatycki MB, Nicoll AJ, et al. Iron-overload-related disease in HFE hereditary hemochromatosis. N Engl J Med. 2008;358:221–30.CrossRefPubMed
12.
go back to reference Rochette J, Le Gac G, Lassoued K, Ferec C, Robson KJ. Factors influencing disease phenotype and penetrance in HFE haemochromatosis. Hum Genet. 2010;128:233–48.CrossRefPubMed Rochette J, Le Gac G, Lassoued K, Ferec C, Robson KJ. Factors influencing disease phenotype and penetrance in HFE haemochromatosis. Hum Genet. 2010;128:233–48.CrossRefPubMed
13.
go back to reference Deugnier Y, Jouanolle AM, Chaperon J, Moirand R, Pithois C, Meyer JF, et al. Gender-specific phenotypic expression and screening strategies in C282Y-linked haemochromatosis: a study of 9396 French people. Br J Haematol. 2002;118:1170–8.CrossRefPubMed Deugnier Y, Jouanolle AM, Chaperon J, Moirand R, Pithois C, Meyer JF, et al. Gender-specific phenotypic expression and screening strategies in C282Y-linked haemochromatosis: a study of 9396 French people. Br J Haematol. 2002;118:1170–8.CrossRefPubMed
14.
go back to reference Moirand R, Adams PC, Bicheler V, Brissot P, Deugnier Y. Clinical features of genetic hemochromatosis in women compared with men. Ann Intern Med. 1997;127:105–10.CrossRefPubMed Moirand R, Adams PC, Bicheler V, Brissot P, Deugnier Y. Clinical features of genetic hemochromatosis in women compared with men. Ann Intern Med. 1997;127:105–10.CrossRefPubMed
15.
go back to reference Bacon BR, Adams PC, Kowdley KV, Powell LW, Tavill AS. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology. 2011;54:328–43.CrossRefPubMedPubMedCentral Bacon BR, Adams PC, Kowdley KV, Powell LW, Tavill AS. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology. 2011;54:328–43.CrossRefPubMedPubMedCentral
16.
go back to reference Hanson EH, Imperatore G, Burke W. HFE gene and hereditary hemochromatosis: a HuGE review. Human genome epidemiology. Am J Epidemiol. 2001;154:193–206.CrossRefPubMed Hanson EH, Imperatore G, Burke W. HFE gene and hereditary hemochromatosis: a HuGE review. Human genome epidemiology. Am J Epidemiol. 2001;154:193–206.CrossRefPubMed
17.
go back to reference Wood MJ, Powell LW, Ramm GA. Environmental and genetic modifiers of the progression to fibrosis and cirrhosis in hemochromatosis. Blood. 2008;111:4456–62.CrossRefPubMed Wood MJ, Powell LW, Ramm GA. Environmental and genetic modifiers of the progression to fibrosis and cirrhosis in hemochromatosis. Blood. 2008;111:4456–62.CrossRefPubMed
19.
go back to reference Latour C, Kautz L, Besson-Fournier C, Island ML, Canonne-Hergaux F, Loreal O, et al. Testosterone perturbs systemic iron balance through activation of epidermal growth factor receptor signaling in the liver and repression of hepcidin. Hepatology. 2014;59:683–94.CrossRefPubMed Latour C, Kautz L, Besson-Fournier C, Island ML, Canonne-Hergaux F, Loreal O, et al. Testosterone perturbs systemic iron balance through activation of epidermal growth factor receptor signaling in the liver and repression of hepcidin. Hepatology. 2014;59:683–94.CrossRefPubMed
20.
go back to reference Neves JV, Olsson IA, Porto G, Rodrigues PN. Hemochromatosis and pregnancy: iron stores in the Hfe−/− mouse are not reduced by multiple pregnancies. Am J Physiol Gastrointest Liver Physiol. 2010;298:G525–9.CrossRefPubMed Neves JV, Olsson IA, Porto G, Rodrigues PN. Hemochromatosis and pregnancy: iron stores in the Hfe−/− mouse are not reduced by multiple pregnancies. Am J Physiol Gastrointest Liver Physiol. 2010;298:G525–9.CrossRefPubMed
21.
go back to reference Jouanolle AM, Fergelot P, Raoul ML, Gandon G, Roussey M, Deugnier Y, et al. Prevalence of the C282Y mutation in Brittany: penetrance of genetic hemochromatosis? Ann Genet. 1998;41:195–8.PubMed Jouanolle AM, Fergelot P, Raoul ML, Gandon G, Roussey M, Deugnier Y, et al. Prevalence of the C282Y mutation in Brittany: penetrance of genetic hemochromatosis? Ann Genet. 1998;41:195–8.PubMed
22.
go back to reference Saliou P, Le Gac G, Mercier AY, Chanu B, Gueguen P, Merour MC, et al. Evidence for the high importance of co-morbid factors in HFE C282Y/H63D patients cared by phlebotomies: results from an observational prospective study. PLoS One. 2013;8:e81128.CrossRefPubMedPubMedCentral Saliou P, Le Gac G, Mercier AY, Chanu B, Gueguen P, Merour MC, et al. Evidence for the high importance of co-morbid factors in HFE C282Y/H63D patients cared by phlebotomies: results from an observational prospective study. PLoS One. 2013;8:e81128.CrossRefPubMedPubMedCentral
23.
24.
go back to reference Fletcher LM, Dixon JL, Purdie DM, Powell LW, Crawford DH. Excess alcohol greatly increases the prevalence of cirrhosis in hereditary hemochromatosis. Gastroenterology. 2002;122:281–9.CrossRefPubMed Fletcher LM, Dixon JL, Purdie DM, Powell LW, Crawford DH. Excess alcohol greatly increases the prevalence of cirrhosis in hereditary hemochromatosis. Gastroenterology. 2002;122:281–9.CrossRefPubMed
25.
go back to reference Scotet V, Merour MC, Mercier AY, Chanu B, Le Faou T, Raguenes O, et al. Hereditary hemochromatosis: effect of excessive alcohol consumption on disease expression in patients homozygous for the C282Y mutation. Am J Epidemiol. 2003;158:129–34.CrossRefPubMed Scotet V, Merour MC, Mercier AY, Chanu B, Le Faou T, Raguenes O, et al. Hereditary hemochromatosis: effect of excessive alcohol consumption on disease expression in patients homozygous for the C282Y mutation. Am J Epidemiol. 2003;158:129–34.CrossRefPubMed
26.
go back to reference Brissot P, Bourel M, Herry D, Verger JP, Messner M, Beaumont C, et al. Assessment of liver iron content in 271 patients: a reevaluation of direct and indirect methods. Gastroenterology. 1981;80:557–65.PubMed Brissot P, Bourel M, Herry D, Verger JP, Messner M, Beaumont C, et al. Assessment of liver iron content in 271 patients: a reevaluation of direct and indirect methods. Gastroenterology. 1981;80:557–65.PubMed
27.
go back to reference Deugnier Y, Bardou-Jacquet E, Le Lan C, Brissot P. Hyperferritinemia not related to hemochromatosis. Gastroenterol Clin Biol. 2009;33:323–6.CrossRefPubMed Deugnier Y, Bardou-Jacquet E, Le Lan C, Brissot P. Hyperferritinemia not related to hemochromatosis. Gastroenterol Clin Biol. 2009;33:323–6.CrossRefPubMed
28.
go back to reference Blanco-Rojo R, Toxqui L, Lopez-Parra AM, Baeza-Richer C, Perez-Granados AM, Arroyo-Pardo E, et al. Influence of diet, menstruation and genetic factors on iron status: a cross-sectional study in Spanish women of childbearing age. Int J Mol Sci. 2014;15:4077–87.CrossRefPubMedPubMedCentral Blanco-Rojo R, Toxqui L, Lopez-Parra AM, Baeza-Richer C, Perez-Granados AM, Arroyo-Pardo E, et al. Influence of diet, menstruation and genetic factors on iron status: a cross-sectional study in Spanish women of childbearing age. Int J Mol Sci. 2014;15:4077–87.CrossRefPubMedPubMedCentral
29.
go back to reference Desgrippes R, Laine F, Morcet J, Perrin M, Manet G, Jezequel C, et al. Decreased iron burden in overweight C282Y homozygous women: putative role of increased hepcidin production. Hepatology. 2013;57:1784–92.CrossRefPubMed Desgrippes R, Laine F, Morcet J, Perrin M, Manet G, Jezequel C, et al. Decreased iron burden in overweight C282Y homozygous women: putative role of increased hepcidin production. Hepatology. 2013;57:1784–92.CrossRefPubMed
31.
go back to reference Viteri FE. The consequences of iron deficiency and anaemia in pregnancy on maternal health, the foetus and the infant. SCN News. 1994;11:14–8. Viteri FE. The consequences of iron deficiency and anaemia in pregnancy on maternal health, the foetus and the infant. SCN News. 1994;11:14–8.
32.
go back to reference Leong WILB. Iron nutrition. In: Iron physiology and pathophysiology in humans. New York: Humana Press; 2012. p. 81–99.CrossRef Leong WILB. Iron nutrition. In: Iron physiology and pathophysiology in humans. New York: Humana Press; 2012. p. 81–99.CrossRef
33.
34.
go back to reference Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for vitamin a, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington (DC): The National Academies Press; 2002. p. 290–393. Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for vitamin a, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington (DC): The National Academies Press; 2002. p. 290–393.
35.
go back to reference FAO/WHO. Requirements of vitamin a, iron, folate and vitamin B12. In: FAO food and nutrition series. Volume N°23. Rome: FAO; 2004. p. 246–78. FAO/WHO. Requirements of vitamin a, iron, folate and vitamin B12. In: FAO food and nutrition series. Volume N°23. Rome: FAO; 2004. p. 246–78.
36.
go back to reference Millard KN, Frazer DM, Wilkins SJ, Anderson GJ. Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat. Gut. 2004;53:655–60.CrossRefPubMedPubMedCentral Millard KN, Frazer DM, Wilkins SJ, Anderson GJ. Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat. Gut. 2004;53:655–60.CrossRefPubMedPubMedCentral
37.
go back to reference Harvey LJ, Armah CN, Dainty JR, Foxall RJ, John Lewis D, Langford NJ, et al. Impact of menstrual blood loss and diet on iron deficiency among women in the UK. Br J Nutr. 2005;94:557–64.CrossRefPubMed Harvey LJ, Armah CN, Dainty JR, Foxall RJ, John Lewis D, Langford NJ, et al. Impact of menstrual blood loss and diet on iron deficiency among women in the UK. Br J Nutr. 2005;94:557–64.CrossRefPubMed
38.
go back to reference Napolitano M, Dolce A, Celenza G, Grandone E, Perilli MG, Siragusa S, et al. Iron-dependent erythropoiesis in women with excessive menstrual blood losses and women with normal menses. Ann Hematol. 2014;93:557–63.CrossRefPubMed Napolitano M, Dolce A, Celenza G, Grandone E, Perilli MG, Siragusa S, et al. Iron-dependent erythropoiesis in women with excessive menstrual blood losses and women with normal menses. Ann Hematol. 2014;93:557–63.CrossRefPubMed
39.
go back to reference Dasharathy SS, Mumford SL, Pollack AZ, Perkins NJ, Mattison DR, Wactawski-Wende J, et al. Menstrual bleeding patterns among regularly menstruating women. Am J Epidemiol. 2012;175:536–45.CrossRefPubMedPubMedCentral Dasharathy SS, Mumford SL, Pollack AZ, Perkins NJ, Mattison DR, Wactawski-Wende J, et al. Menstrual bleeding patterns among regularly menstruating women. Am J Epidemiol. 2012;175:536–45.CrossRefPubMedPubMedCentral
40.
go back to reference Nicolas G, Viatte L, Lou DQ, Bennoun M, Beaumont C, Kahn A, et al. Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet. 2003;34:97–101.CrossRefPubMed Nicolas G, Viatte L, Lou DQ, Bennoun M, Beaumont C, Kahn A, et al. Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nat Genet. 2003;34:97–101.CrossRefPubMed
41.
go back to reference Andriopoulos B Jr, Corradini E, Xia Y, Faasse SA, Chen S, Grgurevic L, et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet. 2009;41:482–7.CrossRefPubMedPubMedCentral Andriopoulos B Jr, Corradini E, Xia Y, Faasse SA, Chen S, Grgurevic L, et al. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet. 2009;41:482–7.CrossRefPubMedPubMedCentral
Metadata
Title
Do pregnancies reduce iron overload in HFE hemochromatosis women? results from an observational prospective study
Authors
Virginie Scotet
Philippe Saliou
Marianne Uguen
Carine L’Hostis
Marie-Christine Merour
Céline Triponey
Brigitte Chanu
Jean-Baptiste Nousbaum
Gerald Le Gac
Claude Ferec
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Pregnancy and Childbirth / Issue 1/2018
Electronic ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-018-1684-6

Other articles of this Issue 1/2018

BMC Pregnancy and Childbirth 1/2018 Go to the issue