Skip to main content
Top
Published in: BMC Pregnancy and Childbirth 1/2017

Open Access 01-12-2017 | Research article

Evidence of lower oxygen reserves during labour in the growth restricted human foetus: a retrospective study

Authors: Silvia Parisi, Clara Monzeglio, Rossella Attini, Marilisa Biolcati, Bianca Masturzo, Manuela Mensa, Marina Mischinelli, Eleonora Pilloni, Tullia Todros

Published in: BMC Pregnancy and Childbirth | Issue 1/2017

Login to get access

Abstract

Background

The aim of the present study is to test the hypothesis that Growth Restricted foetuses (FGR) have the tendency to develop more pathological cardiotocograpic tracings during labour than do appropriate for gestational age foetuses and that there is a shorter time lapse from the beginning of labour and the advent of a pathological cardiotocograpic tracing.

Methods

The study was carried out at the Maternal-Foetal Medicine Unit of the Sant’Anna University Hospital, Turin, Italy. A total of 930 foetuses born at term between January and December 2012 were analysed: 355 small for gestational age (SGA) comprising both constitutional small for gestational age and growth restricted foetuses (cases group) and 575 Appropriate for Gestational Age (AGA) foetuses (control group). Tracings were evaluated independently by two obstetric consultants, according to the International Federation of Gynaecology and Obstetrics (FIGO) classification. The main outcomes considered were the incidence of pathological cardiotocograpic tracings and the time interval between the beginning of labour and the advent of pathological cardiotocograpic tracing.
The Student’s t-test, chi-square test and ANOVA were used for comparisons between cases and controls and amongst groups. Significance was set at <0.05. Univariate and multivariate odds-ratios were calculated.

Results

Foetuses with birthweight <3rd centile (growth restricted foetuses) more frequently presented pathological cardiotocograpic tracings in labour than did controls (43.8% vs. 21.6%; p < 0.001). Pathological cardiotocograpic tracing developed faster in the foetuses with birthweight <3rd centile group (53′, 0′-277′) than it did in the control group (170.5′, 0′-550′; p < 0.05).
A higher induction rate was observed in the cases (29.6%) than in the control group (17%), with statistical significance p < 0.001. To correct for this possible confounding factor a multivariate logistic regression analysis was performed. It confirmed a statistically significant increased risk of pathological cardiotocographic tracings in the FGR group (OR 1.63; CI 1.30–2.05).

Conclusion

The results confirm the hypothesis that Growth Restricted foetuses (FGR) have fewer oxygen reserves to deal with labour. Our results underscore the importance of the prenatal detection of these foetuses and of their continuous cardiotocographic monitoring during labour.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pardi G, Tiengo M, Salmoiraghi L, Uderzo A, Candiani GB. Fetal cardiovascular changes due to hypoxia and asphyxia: experimental study. Ann Ostet Ginecol Med Perinat. 1968;90:753–75.PubMed Pardi G, Tiengo M, Salmoiraghi L, Uderzo A, Candiani GB. Fetal cardiovascular changes due to hypoxia and asphyxia: experimental study. Ann Ostet Ginecol Med Perinat. 1968;90:753–75.PubMed
2.
go back to reference Fleischer A, Anyaegbunam AA, Schulman H, Farmakides G, Randolph G. Uterine and umbilical artery velocimetry during normal labor. Am J Obstet Gynecol. 1987;157:40–3.CrossRefPubMed Fleischer A, Anyaegbunam AA, Schulman H, Farmakides G, Randolph G. Uterine and umbilical artery velocimetry during normal labor. Am J Obstet Gynecol. 1987;157:40–3.CrossRefPubMed
4.
go back to reference Itskovitz J, Goetzman BW, Rudolph AM. The mechanism of late deceleration of the heart rate and its relationship to oxygenation in normoxemic and chronically hypoxemic fetal lambs. Am J Obstet Gynecol. 1982;142:66–73.CrossRefPubMed Itskovitz J, Goetzman BW, Rudolph AM. The mechanism of late deceleration of the heart rate and its relationship to oxygenation in normoxemic and chronically hypoxemic fetal lambs. Am J Obstet Gynecol. 1982;142:66–73.CrossRefPubMed
5.
go back to reference Westgate JA, Wassink G, Bennet L, Gunn AJ. Spontaneous hypoxia in multiple pregnancies is associated with early fetal decompensation and enhanced T-wave elevation during brief repeated cord occlusion in near-term fetal sheep. Am J Obstet Gynecol. 2005;193:1526–33.CrossRefPubMed Westgate JA, Wassink G, Bennet L, Gunn AJ. Spontaneous hypoxia in multiple pregnancies is associated with early fetal decompensation and enhanced T-wave elevation during brief repeated cord occlusion in near-term fetal sheep. Am J Obstet Gynecol. 2005;193:1526–33.CrossRefPubMed
6.
go back to reference National Collaborating Centre for Women’s and Children's Health (UK). Intrapartum care: care of healthy women and their babies during childbirth. London: National Institute for Health and Care Excellence (UK); 2014. National Collaborating Centre for Women’s and Children's Health (UK). Intrapartum care: care of healthy women and their babies during childbirth. London: National Institute for Health and Care Excellence (UK); 2014.
7.
go back to reference American College of Obstetricians and Gynecologists. Practice Bulletin No 106: Intrapartum fetal heart rate monitoring: nomenclature, interpretation, and general management principles. Obstet Gynecol. 2009;114:192–202.CrossRef American College of Obstetricians and Gynecologists. Practice Bulletin No 106: Intrapartum fetal heart rate monitoring: nomenclature, interpretation, and general management principles. Obstet Gynecol. 2009;114:192–202.CrossRef
8.
go back to reference Liston R, Sawchuck D, Young D, Society of Obstetrics and Gynaecologists of Canada; British Columbia Perinatal Health Program. Fetal health surveillance: antepartum and intrapartum consensus guideline. J Obstet Gynaecol Can. 2007;29(9 Suppl 4):S3–56.CrossRefPubMed Liston R, Sawchuck D, Young D, Society of Obstetrics and Gynaecologists of Canada; British Columbia Perinatal Health Program. Fetal health surveillance: antepartum and intrapartum consensus guideline. J Obstet Gynaecol Can. 2007;29(9 Suppl 4):S3–56.CrossRefPubMed
9.
go back to reference Ayres-de-Campos D, Spong CY, Chandraharan E, FIGO Intrapartum F, et al. Monitoring expert consensus panel. FIGO consensus guidelines on intrapartum fetal monitoring: cardiotocography. Int J Gynaecol Obstet. 2015;131:13–24.CrossRefPubMed Ayres-de-Campos D, Spong CY, Chandraharan E, FIGO Intrapartum F, et al. Monitoring expert consensus panel. FIGO consensus guidelines on intrapartum fetal monitoring: cardiotocography. Int J Gynaecol Obstet. 2015;131:13–24.CrossRefPubMed
10.
go back to reference Bertino E, Spada E, Occhi L, Coscia A, Giuliani F, Gagliardi L, et al. Neonatal anthropometric charts: the Italian neonatal study compared with other European studies. JPGN. 2010;51:353–61.PubMed Bertino E, Spada E, Occhi L, Coscia A, Giuliani F, Gagliardi L, et al. Neonatal anthropometric charts: the Italian neonatal study compared with other European studies. JPGN. 2010;51:353–61.PubMed
11.
go back to reference Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48:333–9.CrossRefPubMed Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48:333–9.CrossRefPubMed
12.
go back to reference Unterscheider J, Daly S, Geary MP, Kennelly MM, McAuliffe FM, O’Donoghue K, et al. Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO study. Am J Obstet Gynecol. 2013;208:290. e1-6PubMed Unterscheider J, Daly S, Geary MP, Kennelly MM, McAuliffe FM, O’Donoghue K, et al. Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO study. Am J Obstet Gynecol. 2013;208:290. e1-6PubMed
13.
go back to reference FIGO. Guidelines for the use of fetal monitoring. Int J Gynecol Obstet. 1987;25:159–67.CrossRef FIGO. Guidelines for the use of fetal monitoring. Int J Gynecol Obstet. 1987;25:159–67.CrossRef
14.
go back to reference White CR, Doherty DA, Henderson JJ, Kohan R, Newnham JP, Pennell CE. Benefits of introducing universal umbilical cord blood gas and lactate analysis into an obstetric unit. Aust N Z J Obstet Gynaecol. 2010;50:318–28.CrossRefPubMed White CR, Doherty DA, Henderson JJ, Kohan R, Newnham JP, Pennell CE. Benefits of introducing universal umbilical cord blood gas and lactate analysis into an obstetric unit. Aust N Z J Obstet Gynaecol. 2010;50:318–28.CrossRefPubMed
15.
go back to reference Gjerris AC, Staer-Jensen J, Jørgensen JS, Bergholt T, Nickelsen C. Umbilical cord blood lactate: a valuable tool in the assessment of fetal metabolic acidosis. Eur J Obstet Gynecol Reprod Biol. 2008;139:16–20.CrossRefPubMed Gjerris AC, Staer-Jensen J, Jørgensen JS, Bergholt T, Nickelsen C. Umbilical cord blood lactate: a valuable tool in the assessment of fetal metabolic acidosis. Eur J Obstet Gynecol Reprod Biol. 2008;139:16–20.CrossRefPubMed
16.
go back to reference Simchen MJ, Weisz B, Zilberberg E, Morag I, Weissmann-Brenner A, Sivan E, et al. Male disadvantage for neonatal complications of term infants, especially in small-for-gestational age neonates. J Matern Fetal Neonatal Med. 2014;27:839–43.CrossRefPubMed Simchen MJ, Weisz B, Zilberberg E, Morag I, Weissmann-Brenner A, Sivan E, et al. Male disadvantage for neonatal complications of term infants, especially in small-for-gestational age neonates. J Matern Fetal Neonatal Med. 2014;27:839–43.CrossRefPubMed
17.
go back to reference Kwon JY, Park IY, Lim J, Shin JC. Changes in spectral power of fetal heart rate variability in small-for-gestational-age fetuses are associated with fetal sex. Early HumDev. 2014;90:9–13.CrossRef Kwon JY, Park IY, Lim J, Shin JC. Changes in spectral power of fetal heart rate variability in small-for-gestational-age fetuses are associated with fetal sex. Early HumDev. 2014;90:9–13.CrossRef
18.
go back to reference Li C, Ramahi E, Nijland MJ, Choi J, Myers DA, Nathanielsz PW, et al. Up-regulation of the fetal baboon hypothalamo-pituitary-adrenal axis in intrauterine growth restriction: coincidence with hypothalamic glucocorticoid receptor insensitivity and leptin receptor down-regulation. Endocrinology. 2013;154:2365–73.CrossRefPubMedPubMedCentral Li C, Ramahi E, Nijland MJ, Choi J, Myers DA, Nathanielsz PW, et al. Up-regulation of the fetal baboon hypothalamo-pituitary-adrenal axis in intrauterine growth restriction: coincidence with hypothalamic glucocorticoid receptor insensitivity and leptin receptor down-regulation. Endocrinology. 2013;154:2365–73.CrossRefPubMedPubMedCentral
19.
go back to reference Morrison JL. Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol. 2008;35:730–43.CrossRefPubMed Morrison JL. Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol. 2008;35:730–43.CrossRefPubMed
20.
go back to reference Economides DL, Nicolaides KH, Linton EA, Perry LA, Chard T. Plasma cortisol and adrenocorticotropin in appropriate and small for gestational age fetuses. Fetal Ther. 1988;3:158–64.CrossRefPubMed Economides DL, Nicolaides KH, Linton EA, Perry LA, Chard T. Plasma cortisol and adrenocorticotropin in appropriate and small for gestational age fetuses. Fetal Ther. 1988;3:158–64.CrossRefPubMed
21.
go back to reference Economides DL, Nicolaides KH, Campbell S. Metabolic and endocrine findings in appropriate and small for gestational age fetuses. J Perinat Med. 1991;19:97–105.CrossRefPubMed Economides DL, Nicolaides KH, Campbell S. Metabolic and endocrine findings in appropriate and small for gestational age fetuses. J Perinat Med. 1991;19:97–105.CrossRefPubMed
22.
go back to reference Gagnon R, Challis J, Johnston L, Fraher L. Fetal endocrine responses to chronic placental embolization in the late-gestation ovine fetus. Am J Obstet Gynecol. 1994;170:929–38.CrossRefPubMed Gagnon R, Challis J, Johnston L, Fraher L. Fetal endocrine responses to chronic placental embolization in the late-gestation ovine fetus. Am J Obstet Gynecol. 1994;170:929–38.CrossRefPubMed
23.
go back to reference Li XQ, Zhu P, Myatt L, Sun K. Roles of glucocorticoids in human parturition: a controversial fact? Placenta. 2014;35:291–6.CrossRefPubMed Li XQ, Zhu P, Myatt L, Sun K. Roles of glucocorticoids in human parturition: a controversial fact? Placenta. 2014;35:291–6.CrossRefPubMed
24.
go back to reference Challis JR, Sloboda D, Matthews SG, Holloway A, Alfaidy N, Patel FA, et al. The fetal placental hypothalamic-pituitary-adrenal (HPA) axis, parturition and post natal health. Mol Cell Endocrinol. 2001;185:135–44.CrossRefPubMed Challis JR, Sloboda D, Matthews SG, Holloway A, Alfaidy N, Patel FA, et al. The fetal placental hypothalamic-pituitary-adrenal (HPA) axis, parturition and post natal health. Mol Cell Endocrinol. 2001;185:135–44.CrossRefPubMed
25.
go back to reference Visentin S, Londero AP, Grumolato F, Trevisanuto D, Zanardo V, Ambrosini G, et al. Timing of delivery and neonatal outcomes for small-for-gestational-age fetuses. J Ultrasound Med. 2014;33:1721–8.CrossRefPubMed Visentin S, Londero AP, Grumolato F, Trevisanuto D, Zanardo V, Ambrosini G, et al. Timing of delivery and neonatal outcomes for small-for-gestational-age fetuses. J Ultrasound Med. 2014;33:1721–8.CrossRefPubMed
26.
go back to reference Skråstad RB, Eik-Nes SH, Sviggum O, Johansen OJ, Salvesen KÅ, Romundstad PR, et al. A randomized controlled trial of third-trimester routine ultrasound in a non-selected population. Acta Obstet Gynecol Scand. 2013;92:1353–60.CrossRefPubMed Skråstad RB, Eik-Nes SH, Sviggum O, Johansen OJ, Salvesen KÅ, Romundstad PR, et al. A randomized controlled trial of third-trimester routine ultrasound in a non-selected population. Acta Obstet Gynecol Scand. 2013;92:1353–60.CrossRefPubMed
Metadata
Title
Evidence of lower oxygen reserves during labour in the growth restricted human foetus: a retrospective study
Authors
Silvia Parisi
Clara Monzeglio
Rossella Attini
Marilisa Biolcati
Bianca Masturzo
Manuela Mensa
Marina Mischinelli
Eleonora Pilloni
Tullia Todros
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Pregnancy and Childbirth / Issue 1/2017
Electronic ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-017-1392-7

Other articles of this Issue 1/2017

BMC Pregnancy and Childbirth 1/2017 Go to the issue