Skip to main content
Top
Published in: BMC Pregnancy and Childbirth 1/2015

Open Access 01-12-2015 | Research article

Maternal psychiatric disease and epigenetic evidence suggest a common biology for poor fetal growth

Authors: Timothy H. Ciesielski, Carmen J. Marsit, Scott M. Williams

Published in: BMC Pregnancy and Childbirth | Issue 1/2015

Login to get access

Abstract

Background

We sought to identify and characterize predictors of poor fetal growth among variables extracted from perinatal medical records to gain insight into potential etiologic mechanisms. In this process we reevaluated a previously observed association between poor fetal growth and maternal psychiatric disease.

Methods

We evaluated 449 deliveries of >36 weeks gestation that occurred between 9/2008 and 9/2010 at the Women and Infants Hospital in Providence Rhode Island. This study group was oversampled for Small-for-Gestational-Age (SGA) infants and excluded Large-for-Gestational-Age (LGA) infants. We assessed the associations between recorded clinical variables and impaired fetal growth: SGA or Intrauterine Growth Restriction (IUGR) diagnosis. After validating the previously observed association between maternal psychiatric disease and impaired fetal growth we addressed weaknesses in the prior studies by explicitly considering antidepressant use and the timing of symptoms with respect to pregnancy. We then evaluated DNA methylation levels at 27 candidate loci in placenta from a subset of these deliveries (n = 197) to examine if epigenetic variation could provide insight into the mechanisms that cause this co-morbidity.

Results

Infants of mothers with prenatal psychiatric disease (Depression, Anxiety, OCD/Panic) had increased odds of poor fetal growth (ORadjusted = 3.36, 95%CI: 1.38-8.14). This relationship was similar among those who were treated with antidepressants (ORadjusted = 3.69, 95%CI: 1.31-10.45) and among those who were not (ORadjusted = 3.19, 95%CI: 1.30-7.83). Among those with a history of psychiatric disease but no active disease in pregnancy the ORadjusted was 0.45 (95%CI: 0.09-2.35). A locus near the transcription start site of the leptin receptor (cg21655790) had methylation levels that were decreased in the presence of: 1) SGA/IUGR, and 2) active but not resolved psychiatric disease (among mothers not on antidepressants).

Conclusions

These results validate and further characterize the association between maternal psychiatric disease and poor fetal growth. Because the association appears to depend on active psychiatric disease, this suggests a transient and potentially modifiable pathophysiology. The molecular findings in this study suggest that altered leptin signaling may be involved in the biological mechanisms that link prenatal maternal psychiatric symptoms and poor fetal growth.
Appendix
Available only for authorised users
Literature
1.
go back to reference Szegda K, Markenson G, Bertone-Johnson ER, Chasan-Taber L. Depression during pregnancy: a risk factor for adverse neonatal outcomes? A critical review of the literature. J Matern Fetal Neonatal Med. 2014;27(9):960–7.PubMedCrossRef Szegda K, Markenson G, Bertone-Johnson ER, Chasan-Taber L. Depression during pregnancy: a risk factor for adverse neonatal outcomes? A critical review of the literature. J Matern Fetal Neonatal Med. 2014;27(9):960–7.PubMedCrossRef
2.
go back to reference Grigoriadis S, VonderPorten EH, Mamisashvili L, Tomlinson G, Dennis CL, Koren G, et al. The impact of maternal depression during pregnancy on perinatal outcomes: a systematic review and meta-analysis. J Clin Psychiatry. 2013;74(4):e321–41.PubMedCrossRef Grigoriadis S, VonderPorten EH, Mamisashvili L, Tomlinson G, Dennis CL, Koren G, et al. The impact of maternal depression during pregnancy on perinatal outcomes: a systematic review and meta-analysis. J Clin Psychiatry. 2013;74(4):e321–41.PubMedCrossRef
3.
go back to reference Grote NK, Bridge JA, Gavin AR, Melville JL, Iyengar S, Katon WJ. A meta-analysis of depression during pregnancy and the risk of preterm birth, low birth weight, and intrauterine growth restriction. Arch Gen Psychiatry. 2010;67(10):1012–24.PubMedPubMedCentralCrossRef Grote NK, Bridge JA, Gavin AR, Melville JL, Iyengar S, Katon WJ. A meta-analysis of depression during pregnancy and the risk of preterm birth, low birth weight, and intrauterine growth restriction. Arch Gen Psychiatry. 2010;67(10):1012–24.PubMedPubMedCentralCrossRef
4.
go back to reference Lee HC, Lin HC. Maternal bipolar disorder increased low birthweight and preterm births: a nationwide population-based study. J Affect Disord. 2010;121(1–2):100–5.PubMedCrossRef Lee HC, Lin HC. Maternal bipolar disorder increased low birthweight and preterm births: a nationwide population-based study. J Affect Disord. 2010;121(1–2):100–5.PubMedCrossRef
5.
go back to reference Jablensky AV, Morgan V, Zubrick SR, Bower C, Yellachich LA. Pregnancy, delivery, and neonatal complications in a population cohort of women with schizophrenia and major affective disorders. Am J Psychiatry. 2005;162(1):79–91.PubMedCrossRef Jablensky AV, Morgan V, Zubrick SR, Bower C, Yellachich LA. Pregnancy, delivery, and neonatal complications in a population cohort of women with schizophrenia and major affective disorders. Am J Psychiatry. 2005;162(1):79–91.PubMedCrossRef
6.
go back to reference Warren SL, Racu C, Gregg V, Simmens SJ. Maternal panic disorder: Infant prematurity and low birth weight. J Anxiety Disord. 2006;20(3):342–52.PubMedCrossRef Warren SL, Racu C, Gregg V, Simmens SJ. Maternal panic disorder: Infant prematurity and low birth weight. J Anxiety Disord. 2006;20(3):342–52.PubMedCrossRef
7.
go back to reference Banhidy F, Acs N, Puho E, Czeizel AE. Association between maternal panic disorders and pregnancy complications and delivery outcomes. Eur J Obstet Gynecol Reprod Biol. 2006;124(1):47–52.PubMedCrossRef Banhidy F, Acs N, Puho E, Czeizel AE. Association between maternal panic disorders and pregnancy complications and delivery outcomes. Eur J Obstet Gynecol Reprod Biol. 2006;124(1):47–52.PubMedCrossRef
8.
go back to reference Hironaka M, Kotani T, Sumigama S, Tsuda H, Mano Y, Hayakawa H, et al. Maternal mental disorders and pregnancy outcomes: a clinical study in a Japanese population. J Obstet Gynaecol Res. 2011;37(10):1283–9.PubMedCrossRef Hironaka M, Kotani T, Sumigama S, Tsuda H, Mano Y, Hayakawa H, et al. Maternal mental disorders and pregnancy outcomes: a clinical study in a Japanese population. J Obstet Gynaecol Res. 2011;37(10):1283–9.PubMedCrossRef
9.
go back to reference Wadhwa PD, Sandman CA, Porto M, Dunkel-Schetter C, Garite TJ. The association between prenatal stress and infant birth weight and gestational age at birth: a prospective investigation. Am J Obstet Gynecol. 1993;169(4):858–65.PubMedCrossRef Wadhwa PD, Sandman CA, Porto M, Dunkel-Schetter C, Garite TJ. The association between prenatal stress and infant birth weight and gestational age at birth: a prospective investigation. Am J Obstet Gynecol. 1993;169(4):858–65.PubMedCrossRef
10.
go back to reference Dejin-Karlsson E, Hanson BS, Ostergren PO, Lindgren A, Sjoberg NO, Marsal K. Association of a lack of psychosocial resources and the risk of giving birth to small for gestational age infants: a stress hypothesis. BJOG. 2000;107(1):89–100.PubMedCrossRef Dejin-Karlsson E, Hanson BS, Ostergren PO, Lindgren A, Sjoberg NO, Marsal K. Association of a lack of psychosocial resources and the risk of giving birth to small for gestational age infants: a stress hypothesis. BJOG. 2000;107(1):89–100.PubMedCrossRef
11.
go back to reference Rondo PH, Ferreira RF, Nogueira F, Ribeiro MC, Lobert H, Artes R. Maternal psychological stress and distress as predictors of low birth weight, prematurity and intrauterine growth retardation. Eur J Clin Nutri. 2003;57(2):266–72.CrossRef Rondo PH, Ferreira RF, Nogueira F, Ribeiro MC, Lobert H, Artes R. Maternal psychological stress and distress as predictors of low birth weight, prematurity and intrauterine growth retardation. Eur J Clin Nutri. 2003;57(2):266–72.CrossRef
12.
13.
go back to reference Zimmer EZ, Divon MY. Sonographic diagnosis of IUGR-macrosomia. Clin Obstet Gynecol. 1992;35(1):172–84.PubMedCrossRef Zimmer EZ, Divon MY. Sonographic diagnosis of IUGR-macrosomia. Clin Obstet Gynecol. 1992;35(1):172–84.PubMedCrossRef
14.
go back to reference Banister CE, Koestler DC, Maccani MA, Padbury JF, Houseman EA, Marsit CJ. Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics. 2011;6(7):920–7.PubMedPubMedCentralCrossRef Banister CE, Koestler DC, Maccani MA, Padbury JF, Houseman EA, Marsit CJ. Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics. 2011;6(7):920–7.PubMedPubMedCentralCrossRef
15.
go back to reference Ishida M, Moore GE. The role of imprinted genes in humans. Mol Aspect Med. 2012. Ishida M, Moore GE. The role of imprinted genes in humans. Mol Aspect Med. 2012.
16.
go back to reference Takahashi N, Okamoto A, Kobayashi R, Shirai M, Obata Y, Ogawa H, et al. Deletion of Gtl2, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice. Human Mol Gen. 2009;18(10):1879–88.CrossRef Takahashi N, Okamoto A, Kobayashi R, Shirai M, Obata Y, Ogawa H, et al. Deletion of Gtl2, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice. Human Mol Gen. 2009;18(10):1879–88.CrossRef
17.
go back to reference Liu Y, Murphy SK, Murtha AP, Fuemmeler BF, Schildkraut J, Huang Z, et al. Depression in pregnancy, infant birth weight and DNA methylation of imprint regulatory elements. Epigenetics. 2012;7(7):735–46.PubMedPubMedCentralCrossRef Liu Y, Murphy SK, Murtha AP, Fuemmeler BF, Schildkraut J, Huang Z, et al. Depression in pregnancy, infant birth weight and DNA methylation of imprint regulatory elements. Epigenetics. 2012;7(7):735–46.PubMedPubMedCentralCrossRef
21.
22.
go back to reference Deuschle M, Blum WF, Englaro P, Schweiger U, Weber B, Pflaum CD, et al. Plasma leptin in depressed patients and healthy controls. Horm Metab Res. 1996;28(12):714–7.PubMedCrossRef Deuschle M, Blum WF, Englaro P, Schweiger U, Weber B, Pflaum CD, et al. Plasma leptin in depressed patients and healthy controls. Horm Metab Res. 1996;28(12):714–7.PubMedCrossRef
23.
go back to reference Antonijevic IA, Murck H, Frieboes RM, Horn R, Brabant G, Steiger A. Elevated nocturnal profiles of serum leptin in patients with depression. J Psychiat Res. 1998;32(6):403–10.PubMedCrossRef Antonijevic IA, Murck H, Frieboes RM, Horn R, Brabant G, Steiger A. Elevated nocturnal profiles of serum leptin in patients with depression. J Psychiat Res. 1998;32(6):403–10.PubMedCrossRef
24.
go back to reference Rubin RT, Rhodes ME, Czambel RK. Sexual diergism of baseline plasma leptin and leptin suppression by arginine vasopressin in major depressives and matched controls. Psychiat Res. 2002;113(3):255–68.CrossRef Rubin RT, Rhodes ME, Czambel RK. Sexual diergism of baseline plasma leptin and leptin suppression by arginine vasopressin in major depressives and matched controls. Psychiat Res. 2002;113(3):255–68.CrossRef
25.
go back to reference Jow GM, Yang TT, Chen CL. Leptin and cholesterol levels are low in major depressive disorder, but high in schizophrenia. J Affect Disord. 2006;90(1):21–7.PubMedCrossRef Jow GM, Yang TT, Chen CL. Leptin and cholesterol levels are low in major depressive disorder, but high in schizophrenia. J Affect Disord. 2006;90(1):21–7.PubMedCrossRef
26.
go back to reference Lawson EA, Miller KK, Blum JI, Meenaghan E, Misra M, Eddy KT, et al. Leptin levels are associated with decreased depressive symptoms in women across the weight spectrum, independent of body fat. Clin Endocrin. 2012;76(4):520–5.CrossRef Lawson EA, Miller KK, Blum JI, Meenaghan E, Misra M, Eddy KT, et al. Leptin levels are associated with decreased depressive symptoms in women across the weight spectrum, independent of body fat. Clin Endocrin. 2012;76(4):520–5.CrossRef
27.
go back to reference Kraus T, Haack M, Schuld A, Hinze-Selch D, Pollmacher T. Low leptin levels but normal body mass indices in patients with depression or schizophrenia. Neuroendocrinology. 2001;73(4):243–7.PubMedCrossRef Kraus T, Haack M, Schuld A, Hinze-Selch D, Pollmacher T. Low leptin levels but normal body mass indices in patients with depression or schizophrenia. Neuroendocrinology. 2001;73(4):243–7.PubMedCrossRef
28.
go back to reference Zeman M, Jirak R, Jachymova M, Vecka M, Tvrzicka E, Zak A. Leptin, adiponectin, leptin to adiponectin ratio and insulin resistance in depressive women. Neuro Endocrinol Lett. 2009;30(3):387–95.PubMed Zeman M, Jirak R, Jachymova M, Vecka M, Tvrzicka E, Zak A. Leptin, adiponectin, leptin to adiponectin ratio and insulin resistance in depressive women. Neuro Endocrinol Lett. 2009;30(3):387–95.PubMed
29.
go back to reference Ren RX, Shen Y. A meta-analysis of relationship between birth weight and cord blood leptin levels in newborns. WJP. 2010;6(4):311–6.PubMed Ren RX, Shen Y. A meta-analysis of relationship between birth weight and cord blood leptin levels in newborns. WJP. 2010;6(4):311–6.PubMed
30.
go back to reference Karakosta P, Chatzi L, Plana E, Margioris A, Castanas E, Kogevinas M. Leptin levels in cord blood and anthropometric measures at birth: a systematic review and meta-analysis. Paediatr Perinat Epidemiol. 2011;25(2):150–63.PubMedCrossRef Karakosta P, Chatzi L, Plana E, Margioris A, Castanas E, Kogevinas M. Leptin levels in cord blood and anthropometric measures at birth: a systematic review and meta-analysis. Paediatr Perinat Epidemiol. 2011;25(2):150–63.PubMedCrossRef
31.
go back to reference Lesseur C, Armstrong DA, Paquette AG, Koestler DC, Padbury JF, Marsit CJ. Tissue-specific Leptin promoter DNA methylation is associated with maternal and infant perinatal factors. Mol Cell Endocrinol. 2013;381(1–2):160–7.PubMedPubMedCentralCrossRef Lesseur C, Armstrong DA, Paquette AG, Koestler DC, Padbury JF, Marsit CJ. Tissue-specific Leptin promoter DNA methylation is associated with maternal and infant perinatal factors. Mol Cell Endocrinol. 2013;381(1–2):160–7.PubMedPubMedCentralCrossRef
32.
go back to reference Struwe E, Berzl GM, Schild RL, Dotsch J. Gene expression of placental hormones regulating energy balance in small for gestational age neonates. Eur J Obstet Gynecol Reprod Biol. 2009;142(1):38–42.PubMedCrossRef Struwe E, Berzl GM, Schild RL, Dotsch J. Gene expression of placental hormones regulating energy balance in small for gestational age neonates. Eur J Obstet Gynecol Reprod Biol. 2009;142(1):38–42.PubMedCrossRef
33.
go back to reference Tzschoppe A, Struwe E, Rascher W, Dorr HG, Schild RL, Goecke TW, et al. Intrauterine growth restriction (IUGR) is associated with increased leptin synthesis and binding capability in neonates. Clin Endocrinol (Oxf). 2011;74(4):459–66.CrossRef Tzschoppe A, Struwe E, Rascher W, Dorr HG, Schild RL, Goecke TW, et al. Intrauterine growth restriction (IUGR) is associated with increased leptin synthesis and binding capability in neonates. Clin Endocrinol (Oxf). 2011;74(4):459–66.CrossRef
34.
go back to reference Shroff MR, Holzman C, Tian Y, Evans RW, Sikorskii A. Mid-pregnancy maternal leptin levels, birthweight for gestational age and preterm delivery. Clin Endocrinol (Oxf). 2013;78(4):607–13.CrossRef Shroff MR, Holzman C, Tian Y, Evans RW, Sikorskii A. Mid-pregnancy maternal leptin levels, birthweight for gestational age and preterm delivery. Clin Endocrinol (Oxf). 2013;78(4):607–13.CrossRef
35.
go back to reference Catov JM, Patrick TE, Powers RW, Ness RB, Harger G, Roberts JM. Maternal leptin across pregnancy in women with small-for-gestational-age infants. Am J Obstet Gynecol. 2007;196(6):558.PubMedCrossRef Catov JM, Patrick TE, Powers RW, Ness RB, Harger G, Roberts JM. Maternal leptin across pregnancy in women with small-for-gestational-age infants. Am J Obstet Gynecol. 2007;196(6):558.PubMedCrossRef
36.
go back to reference Franco-Sena AB, Goldani MZ, Tavares do Carmo M, Velasquez-Melendez G, Kac G. Low leptin concentration in the first gestational trimester is associated with being born small for gestational age: prospective study in Rio de Janeiro. Brazil Neonatology. 2010;97(4):291–8.PubMedCrossRef Franco-Sena AB, Goldani MZ, Tavares do Carmo M, Velasquez-Melendez G, Kac G. Low leptin concentration in the first gestational trimester is associated with being born small for gestational age: prospective study in Rio de Janeiro. Brazil Neonatology. 2010;97(4):291–8.PubMedCrossRef
37.
go back to reference Mise H, Yura S, Itoh H, Nuamah MA, Takemura M, Sagawa N, et al. The relationship between maternal plasma leptin levels and fetal growth restriction. Endocr J. 2007;54(6):945–51.PubMedCrossRef Mise H, Yura S, Itoh H, Nuamah MA, Takemura M, Sagawa N, et al. The relationship between maternal plasma leptin levels and fetal growth restriction. Endocr J. 2007;54(6):945–51.PubMedCrossRef
38.
go back to reference Verhaeghe J, van Bree R, Van Herck E. Maternal body size and birth weight: can insulin or adipokines do better? Metabolism: Clin Experimen. 2006;55(3):339–44.CrossRef Verhaeghe J, van Bree R, Van Herck E. Maternal body size and birth weight: can insulin or adipokines do better? Metabolism: Clin Experimen. 2006;55(3):339–44.CrossRef
39.
go back to reference Pighetti M, Tommaselli GA, D'Elia A, Di Carlo C, Mariano A, Di Carlo A, et al. Maternal serum and umbilical cord blood leptin concentrations with fetal growth restriction. Obstet Gynecol. 2003;102(3):535–43.PubMed Pighetti M, Tommaselli GA, D'Elia A, Di Carlo C, Mariano A, Di Carlo A, et al. Maternal serum and umbilical cord blood leptin concentrations with fetal growth restriction. Obstet Gynecol. 2003;102(3):535–43.PubMed
40.
go back to reference Hedley P, Pihl K, Krebs L, Larsen T, Christiansen M. Leptin in first trimester pregnancy serum: no reduction associated with small-for-gestational-age infants. Reprod Biomed Online. 2009;18(6):832–7.PubMedCrossRef Hedley P, Pihl K, Krebs L, Larsen T, Christiansen M. Leptin in first trimester pregnancy serum: no reduction associated with small-for-gestational-age infants. Reprod Biomed Online. 2009;18(6):832–7.PubMedCrossRef
41.
go back to reference Tamura T, Goldenberg RL, Johnston KE, Cliver SP. Serum leptin concentrations during pregnancy and their relationship to fetal growth. Obstet Gynecol. 1998;91(3):389–95.PubMedCrossRef Tamura T, Goldenberg RL, Johnston KE, Cliver SP. Serum leptin concentrations during pregnancy and their relationship to fetal growth. Obstet Gynecol. 1998;91(3):389–95.PubMedCrossRef
42.
go back to reference Yildiz L, Avci B, Ingec M. Umbilical cord and maternal blood leptin concentrations in intrauterine growth retardation. CCLM / FESCC. 2002;40(11):1114–7. Yildiz L, Avci B, Ingec M. Umbilical cord and maternal blood leptin concentrations in intrauterine growth retardation. CCLM / FESCC. 2002;40(11):1114–7.
43.
go back to reference Papadopoulou FG, Mamopoulos AM, Triantos A, Constantinidis TC, Papadimas J, Assimakopoulos EA, et al. Leptin levels in maternal and cord serum: relationship with fetal development and placental weight. J Matern Fetal Med. 2000;9(5):298–302.PubMedCrossRef Papadopoulou FG, Mamopoulos AM, Triantos A, Constantinidis TC, Papadimas J, Assimakopoulos EA, et al. Leptin levels in maternal and cord serum: relationship with fetal development and placental weight. J Matern Fetal Med. 2000;9(5):298–302.PubMedCrossRef
44.
go back to reference Maymo JL, Perez AP, Gambino Y, Calvo JC, Sanchez-Margalet V, Varone CL. Review: Leptin gene expression in the placenta--regulation of a key hormone in trophoblast proliferation and survival. Placenta. 2011;32 Suppl 2:S146–53.PubMedCrossRef Maymo JL, Perez AP, Gambino Y, Calvo JC, Sanchez-Margalet V, Varone CL. Review: Leptin gene expression in the placenta--regulation of a key hormone in trophoblast proliferation and survival. Placenta. 2011;32 Suppl 2:S146–53.PubMedCrossRef
45.
go back to reference Khalyfa A, Carreras A, Hakim F, Cunningham JM, Wang Y, Gozal D. Effects of late gestational high-fat diet on body weight, metabolic regulation and adipokine expression in offspring. Int J Obes. 2013;37(11):1481–9.CrossRef Khalyfa A, Carreras A, Hakim F, Cunningham JM, Wang Y, Gozal D. Effects of late gestational high-fat diet on body weight, metabolic regulation and adipokine expression in offspring. Int J Obes. 2013;37(11):1481–9.CrossRef
46.
go back to reference Bennett HA, Einarson A, Taddio A, Koren G, Einarson TR. Prevalence of depression during pregnancy: systematic review. Obstet Gynecol. 2004;103(4):698–709.PubMedCrossRef Bennett HA, Einarson A, Taddio A, Koren G, Einarson TR. Prevalence of depression during pregnancy: systematic review. Obstet Gynecol. 2004;103(4):698–709.PubMedCrossRef
47.
go back to reference Marcus SM, Flynn HA, Blow FC, Barry KL. Depressive symptoms among pregnant women screened in obstetrics settings. J Women's Health. 2003;12(4):373–80.CrossRef Marcus SM, Flynn HA, Blow FC, Barry KL. Depressive symptoms among pregnant women screened in obstetrics settings. J Women's Health. 2003;12(4):373–80.CrossRef
48.
go back to reference Heron J, O'Connor TG, Evans J, Golding J, Glover V. The course of anxiety and depression through pregnancy and the postpartum in a community sample. J Affect Disord. 2004;80(1):65–73.PubMedCrossRef Heron J, O'Connor TG, Evans J, Golding J, Glover V. The course of anxiety and depression through pregnancy and the postpartum in a community sample. J Affect Disord. 2004;80(1):65–73.PubMedCrossRef
49.
go back to reference Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73.PubMedPubMedCentralCrossRef Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73.PubMedPubMedCentralCrossRef
50.
go back to reference de Bie HM, Oostrom KJ, de Waal HA D-v. Brain development, intelligence and cognitive outcome in children born small for gestational age. Horm Res Paediatr. 2010;73(1):6–14.PubMedCrossRef de Bie HM, Oostrom KJ, de Waal HA D-v. Brain development, intelligence and cognitive outcome in children born small for gestational age. Horm Res Paediatr. 2010;73(1):6–14.PubMedCrossRef
51.
go back to reference Pallotto EK, Kilbride HW. Perinatal outcome and later implications of intrauterine growth restriction. Clin Obstet Gynecol. 2006;49(2):257–69.PubMedCrossRef Pallotto EK, Kilbride HW. Perinatal outcome and later implications of intrauterine growth restriction. Clin Obstet Gynecol. 2006;49(2):257–69.PubMedCrossRef
Metadata
Title
Maternal psychiatric disease and epigenetic evidence suggest a common biology for poor fetal growth
Authors
Timothy H. Ciesielski
Carmen J. Marsit
Scott M. Williams
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Pregnancy and Childbirth / Issue 1/2015
Electronic ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-015-0627-8

Other articles of this Issue 1/2015

BMC Pregnancy and Childbirth 1/2015 Go to the issue