Skip to main content
Top
Published in: BMC Neurology 1/2020

Open Access 01-12-2020 | Magnetic Resonance Imaging | Case report

Severe cerebral edema induced by watershed shift after bypass in a patient with chronic steno-occlusive disease: a case report and short literature review

Authors: Yin Li, Yu-yu Wei, Yang Cao, Xiao-yang Lu, Yuan Yao, Lin Wang

Published in: BMC Neurology | Issue 1/2020

Login to get access

Abstract

Background

Carotid occlusive disease is a type of progressive disease resulting in ischemic stroke. Extracranial-intracranial bypass surgery represents a valid therapeutic option when medical treatment does not make effects. The appearance of cerebral edema following bypass is common during acute stage. Additionally, there are many causes of mild cerebral edema, such as hemodynamic changes, venous congestion and others. However, severe edema involving large brain tissue, which presents as reversible aphasia and hemiplegia, remains to be elucidated.

Case presentation

A 55-year-old man was admitted to the neurosurgery department for repeated dizziness for over a year and sudden onset of syncope 1 month prior, and he was diagnosed with carotid occlusive disease. After surgical contraindications were excluded, dual bypass and encephalo-duro-myo-synangiosis were performed. Although blood pressure and fluid management were strictly under control promptly after surgery, massive cerebral edema involving the left anterior cerebral artery and middle cerebral artery territories occurred from the 6th day after surgery. Additionally, no discernible cerebral infarction or hemorrhage occurred. Moreover, the cerebral blood flow of the middle cerebral artery displayed an early decrease followed by delayed elevation on the left side. Without restricting the spreading of cerebral edema, life-threatening cerebral herniation could develop at any time. Mannitol and furosemide were administered for impending cerebral herniation. The amelioration of symptoms was noticed on the 16th day after surgery. The patient felt relief on the 21st day after surgery. Digital subtraction angiography performed on the 180th day after surgery demonstrated the patency of dual anastomosed vessels, and the patient recovered without any permanent neurological deficit.

Conclusion

Based on changes in cerebral blood flow and reversible symptoms, the “watershed shift” phenomenon could explain such a severe deficit. However, this deficit was not the same as the classical presentation of the “watershed shift”, which involves a moderate amount of brain tissue and presents significant increases in cerebral blood flow. In addition to the “watershed shift”, a swollen temporal muscle may also participate in the progression of focal edema.
Literature
1.
go back to reference Group EIBS. Failure of extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. N Engl J Med. 1985;313(19):1191–200.CrossRef Group EIBS. Failure of extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. N Engl J Med. 1985;313(19):1191–200.CrossRef
2.
go back to reference Powers WJ, Clarke WR, Grubb RL Jr, Videen TO, Adams HP Jr, Derdeyn CP, et al. Extracranial-intracranial bypass surgery for stroke prevention in hemodynamic cerebral ischemia: the carotid occlusion surgery study randomized trial. JAMA. 2011;306(18):1983–92.CrossRef Powers WJ, Clarke WR, Grubb RL Jr, Videen TO, Adams HP Jr, Derdeyn CP, et al. Extracranial-intracranial bypass surgery for stroke prevention in hemodynamic cerebral ischemia: the carotid occlusion surgery study randomized trial. JAMA. 2011;306(18):1983–92.CrossRef
3.
go back to reference Low SW, Teo K, Lwin S, Yeo LL, Paliwal PR, Ahmad A, et al. Improvement in cerebral hemodynamic parameters and outcomes after superficial temporal artery-middle cerebral artery bypass in patients with severe stenoocclusive disease of the intracranial internal carotid or middle cerebral arteries. J Neurosurg. 2015;123(3):662–9.CrossRef Low SW, Teo K, Lwin S, Yeo LL, Paliwal PR, Ahmad A, et al. Improvement in cerebral hemodynamic parameters and outcomes after superficial temporal artery-middle cerebral artery bypass in patients with severe stenoocclusive disease of the intracranial internal carotid or middle cerebral arteries. J Neurosurg. 2015;123(3):662–9.CrossRef
4.
go back to reference Muroi C, Khan N, Bellut D, Fujioka M, Yonekawa Y. Extracranial-intracranial bypass in atherosclerotic cerebrovascular disease: report of a single Centre experience. Br J Neurosurg. 2011;25(3):357–62.CrossRef Muroi C, Khan N, Bellut D, Fujioka M, Yonekawa Y. Extracranial-intracranial bypass in atherosclerotic cerebrovascular disease: report of a single Centre experience. Br J Neurosurg. 2011;25(3):357–62.CrossRef
5.
go back to reference van Mook WN, Rennenberg RJ, Schurink GW, van Oostenbrugge RJ, Mess WH, Hofman PA, et al. Cerebral hyperperfusion syndrome. Lancet Neurol. 2005;4(12):877–88.CrossRef van Mook WN, Rennenberg RJ, Schurink GW, van Oostenbrugge RJ, Mess WH, Hofman PA, et al. Cerebral hyperperfusion syndrome. Lancet Neurol. 2005;4(12):877–88.CrossRef
6.
go back to reference Yamaguchi K, Kawamata T, Kawashima A, Hori T, Okada Y. Incidence and predictive factors of cerebral hyperperfusion after extracranial-intracranial bypass for occlusive cerebrovascular diseases. Neurosurgery. 2010;67(6):1548–54 discussion 54.CrossRef Yamaguchi K, Kawamata T, Kawashima A, Hori T, Okada Y. Incidence and predictive factors of cerebral hyperperfusion after extracranial-intracranial bypass for occlusive cerebrovascular diseases. Neurosurgery. 2010;67(6):1548–54 discussion 54.CrossRef
7.
go back to reference Yu J, Hu M, Yi L, Zhou K, Zhang J, Chen J. Paradoxical association of symptomatic cerebral edema with local hypoperfusion caused by the 'watershed shift' after revascularization surgery for adult moyamoya disease: a case report. Ther Adv Neurol Disord. 2019;12:1756286419878343.CrossRef Yu J, Hu M, Yi L, Zhou K, Zhang J, Chen J. Paradoxical association of symptomatic cerebral edema with local hypoperfusion caused by the 'watershed shift' after revascularization surgery for adult moyamoya disease: a case report. Ther Adv Neurol Disord. 2019;12:1756286419878343.CrossRef
8.
go back to reference Hou K, Guo Y, Xu K, Yu J. Clinical importance of the superficial temporal artery in neurovascular diseases: a PRISMA-compliant systematic review. Int J Med Sci. 2019;16(10):1377–85.CrossRef Hou K, Guo Y, Xu K, Yu J. Clinical importance of the superficial temporal artery in neurovascular diseases: a PRISMA-compliant systematic review. Int J Med Sci. 2019;16(10):1377–85.CrossRef
9.
go back to reference Lee JI, Jander S, Oberhuber A, Schelzig H, Hanggi D, Turowski B, et al. Stroke in patients with occlusion of the internal carotid artery: options for treatment. Expert Rev Neurother. 2014;14(10):1153–67.CrossRef Lee JI, Jander S, Oberhuber A, Schelzig H, Hanggi D, Turowski B, et al. Stroke in patients with occlusion of the internal carotid artery: options for treatment. Expert Rev Neurother. 2014;14(10):1153–67.CrossRef
10.
go back to reference Tu XK, Fujimura M, Rashad S, Mugikura S, Sakata H, Niizuma K, et al. Uneven cerebral hemodynamic change as a cause of neurological deterioration in the acute stage after direct revascularization for moyamoya disease: cerebral hyperperfusion and remote ischemia caused by the 'watershed shift'. Neurosurg Rev. 2017;40(3):507–12.CrossRef Tu XK, Fujimura M, Rashad S, Mugikura S, Sakata H, Niizuma K, et al. Uneven cerebral hemodynamic change as a cause of neurological deterioration in the acute stage after direct revascularization for moyamoya disease: cerebral hyperperfusion and remote ischemia caused by the 'watershed shift'. Neurosurg Rev. 2017;40(3):507–12.CrossRef
11.
go back to reference Nag S, Manias JL, Stewart DJ. Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol. 2009;118(2):197–217.CrossRef Nag S, Manias JL, Stewart DJ. Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol. 2009;118(2):197–217.CrossRef
12.
go back to reference Sakata H, Fujimura M, Mugikura S, Sato K, Tominaga T. Local Vasogenic edema without cerebral Hyperperfusion after direct revascularization surgery for Moyamoya disease. J Stroke Cerebrovasc Dis. 2015;24(7):e179–84.CrossRef Sakata H, Fujimura M, Mugikura S, Sato K, Tominaga T. Local Vasogenic edema without cerebral Hyperperfusion after direct revascularization surgery for Moyamoya disease. J Stroke Cerebrovasc Dis. 2015;24(7):e179–84.CrossRef
13.
go back to reference Karapanayiotides T, Meuli R, Devuyst G, Piechowski-Jozwiak B, Dewarrat A, Ruchat P, et al. Postcarotid endarterectomy hyperperfusion or reperfusion syndrome. Stroke. 2005;36(1):21–6.CrossRef Karapanayiotides T, Meuli R, Devuyst G, Piechowski-Jozwiak B, Dewarrat A, Ruchat P, et al. Postcarotid endarterectomy hyperperfusion or reperfusion syndrome. Stroke. 2005;36(1):21–6.CrossRef
14.
go back to reference Chan PH. Role of oxidants in ischemic brain damage. Stroke. 1996;27(6):1124–9.CrossRef Chan PH. Role of oxidants in ischemic brain damage. Stroke. 1996;27(6):1124–9.CrossRef
15.
go back to reference Hayashi K, Horie N, Suyama K, Nagata I. Incidence and clinical features of symptomatic cerebral hyperperfusion syndrome after vascular reconstruction. World Neurosurg. 2012;78(5):447–54.CrossRef Hayashi K, Horie N, Suyama K, Nagata I. Incidence and clinical features of symptomatic cerebral hyperperfusion syndrome after vascular reconstruction. World Neurosurg. 2012;78(5):447–54.CrossRef
16.
go back to reference Ha JY, Choi YH, Lee S, Cho YJ, Cheon JE, Kim IO, et al. Arterial spin labeling MRI for quantitative assessment of cerebral perfusion before and after cerebral revascularization in children with Moyamoya disease. Korean J Radiol. 2019;20(6):985–96.CrossRef Ha JY, Choi YH, Lee S, Cho YJ, Cheon JE, Kim IO, et al. Arterial spin labeling MRI for quantitative assessment of cerebral perfusion before and after cerebral revascularization in children with Moyamoya disease. Korean J Radiol. 2019;20(6):985–96.CrossRef
17.
go back to reference Tashiro R, Fujimura M, Kameyama M, Mugikura S, Endo H, Takeuchi Y, et al. Incidence and risk factors of the watershed shift phenomenon after superficial temporal artery-middle cerebral artery anastomosis for adult Moyamoya disease. Cerebrovasc Dis. 2019;47(3–4):178–87.CrossRef Tashiro R, Fujimura M, Kameyama M, Mugikura S, Endo H, Takeuchi Y, et al. Incidence and risk factors of the watershed shift phenomenon after superficial temporal artery-middle cerebral artery anastomosis for adult Moyamoya disease. Cerebrovasc Dis. 2019;47(3–4):178–87.CrossRef
18.
go back to reference Fujimura M, Kaneta T, Shimizu H, Tominaga T. Cerebral ischemia owing to compression of the brain by swollen temporal muscle used for encephalo-myo-synangiosis in moyamoya disease. Neurosurg Rev. 2009;32(2):245–9 discussion 9.CrossRef Fujimura M, Kaneta T, Shimizu H, Tominaga T. Cerebral ischemia owing to compression of the brain by swollen temporal muscle used for encephalo-myo-synangiosis in moyamoya disease. Neurosurg Rev. 2009;32(2):245–9 discussion 9.CrossRef
19.
go back to reference Hong KS, Cho YJ, Lee SK, Jeong SW, Kim WK, Oh EJ. Diffusion changes suggesting predominant vasogenic oedema during partial status epilepticus. Seizure. 2004;13(5):317–21.CrossRef Hong KS, Cho YJ, Lee SK, Jeong SW, Kim WK, Oh EJ. Diffusion changes suggesting predominant vasogenic oedema during partial status epilepticus. Seizure. 2004;13(5):317–21.CrossRef
20.
go back to reference Kronenburg A, Braun KP, van der Zwan A, Klijn CJ. Recent advances in moyamoya disease: pathophysiology and treatment. Curr Neurol Neurosci Rep. 2014;14(1):423.CrossRef Kronenburg A, Braun KP, van der Zwan A, Klijn CJ. Recent advances in moyamoya disease: pathophysiology and treatment. Curr Neurol Neurosci Rep. 2014;14(1):423.CrossRef
21.
go back to reference Uchino H, Nakayama N, Kazumata K, Kuroda S, Houkin K. Edaravone reduces Hyperperfusion-related neurological deficits in adult Moyamoya disease: historical control study. Stroke. 2016;47(7):1930–2.CrossRef Uchino H, Nakayama N, Kazumata K, Kuroda S, Houkin K. Edaravone reduces Hyperperfusion-related neurological deficits in adult Moyamoya disease: historical control study. Stroke. 2016;47(7):1930–2.CrossRef
22.
go back to reference Andereggen L, Amin-Hanjani S, El-Koussy M, Verma RK, Yuki K, Schoeni D, et al. Quantitative magnetic resonance angiography as a potential predictor for cerebral hyperperfusion syndrome: a preliminary study. J Neurosurg. 2018;128(4):1006–14.CrossRef Andereggen L, Amin-Hanjani S, El-Koussy M, Verma RK, Yuki K, Schoeni D, et al. Quantitative magnetic resonance angiography as a potential predictor for cerebral hyperperfusion syndrome: a preliminary study. J Neurosurg. 2018;128(4):1006–14.CrossRef
Metadata
Title
Severe cerebral edema induced by watershed shift after bypass in a patient with chronic steno-occlusive disease: a case report and short literature review
Authors
Yin Li
Yu-yu Wei
Yang Cao
Xiao-yang Lu
Yuan Yao
Lin Wang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2020
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-020-01912-z

Other articles of this Issue 1/2020

BMC Neurology 1/2020 Go to the issue