Skip to main content
Top
Published in: BMC Neurology 1/2018

Open Access 01-12-2018 | Research article

Revealing Alzheimer’s disease genes spectrum in the whole-genome by machine learning

Authors: Xiaoyan Huang, Hankui Liu, Xinming Li, Liping Guan, Jiankang Li, Laurent Christian Asker M. Tellier, Huanming Yang, Jian Wang, Jianguo Zhang

Published in: BMC Neurology | Issue 1/2018

Login to get access

Abstract

Background

Alzheimer’s disease (AD) is an important, progressive neurodegenerative disease, with a complex genetic architecture. A key goal of biomedical research is to seek out disease risk genes, and to elucidate the function of these risk genes in the development of disease. For this purpose, expanding the AD-associated gene set is necessary. In past research, the prediction methods for AD related genes has been limited in their exploration of the target genome regions. We here present a genome-wide method for AD candidate genes predictions.

Methods

We present a machine learning approach (SVM), based upon integrating gene expression data with human brain-specific gene network data, to discover the full spectrum of AD genes across the whole genome.

Results

We classified AD candidate genes with an accuracy and the area under the receiver operating characteristic (ROC) curve of 84.56% and 94%. Our approach provides a supplement for the spectrum of AD-associated genes extracted from more than 20,000 genes in a genome wide scale.

Conclusions

In this study, we have elucidated the whole-genome spectrum of AD, using a machine learning approach. Through this method, we expect for the candidate gene catalogue to provide a more comprehensive annotation of AD for researchers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Talwar P, Sinha J, Grover S, Rawat C, Kushwaha S, Agarwal R, Taneja V, Kukreti R. Dissecting complex and multifactorial nature of Alzheimer's disease pathogenesis: a clinical, genomic, and systems biology perspective. Mol Neurobiol. 2016;53(7):4833–64.CrossRefPubMed Talwar P, Sinha J, Grover S, Rawat C, Kushwaha S, Agarwal R, Taneja V, Kukreti R. Dissecting complex and multifactorial nature of Alzheimer's disease pathogenesis: a clinical, genomic, and systems biology perspective. Mol Neurobiol. 2016;53(7):4833–64.CrossRefPubMed
2.
go back to reference Ulamek-Koziol M, Pluta R, Januszewski S, Kocki J, Bogucka-Kocka A, Czuczwar SJ. Expression of Alzheimer's disease risk genes in ischemic brain degeneration. Pharmacological reports : PR. 2016;68(6):1345–9.CrossRefPubMed Ulamek-Koziol M, Pluta R, Januszewski S, Kocki J, Bogucka-Kocka A, Czuczwar SJ. Expression of Alzheimer's disease risk genes in ischemic brain degeneration. Pharmacological reports : PR. 2016;68(6):1345–9.CrossRefPubMed
3.
go back to reference Szigeti K. New genome-wide methods for elucidation of candidate copy number variations (CNVs) contributing to Alzheimer's disease heritability. Methods Mol Biol. 2016;1303:315–26.CrossRefPubMed Szigeti K. New genome-wide methods for elucidation of candidate copy number variations (CNVs) contributing to Alzheimer's disease heritability. Methods Mol Biol. 2016;1303:315–26.CrossRefPubMed
4.
go back to reference Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, Sieberts SK, Monks S, Reitman M, Zhang C, et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet. 2005;37(7):710–7.CrossRefPubMedPubMedCentral Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, Sieberts SK, Monks S, Reitman M, Zhang C, et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet. 2005;37(7):710–7.CrossRefPubMedPubMedCentral
6.
go back to reference Tang X, Hu X, Yang X, Fan Y, Li Y, Hu W, Liao Y, Zheng MC, Peng W, Gao L. Predicting diabetes mellitus genes via protein-protein interaction and protein subcellular localization information. BMC Genomics. 2016;17(Suppl 4):433.CrossRefPubMedPubMedCentral Tang X, Hu X, Yang X, Fan Y, Li Y, Hu W, Liao Y, Zheng MC, Peng W, Gao L. Predicting diabetes mellitus genes via protein-protein interaction and protein subcellular localization information. BMC Genomics. 2016;17(Suppl 4):433.CrossRefPubMedPubMedCentral
7.
go back to reference Karni S, Soreq H, Sharan R. A network-based method for predicting disease-causing genes. Journal of computational biology : a journal of computational molecular cell biology. 2009;16(2):181–9.CrossRef Karni S, Soreq H, Sharan R. A network-based method for predicting disease-causing genes. Journal of computational biology : a journal of computational molecular cell biology. 2009;16(2):181–9.CrossRef
8.
go back to reference Zhang Q, He M, Wang J, Liu S, Cheng H, Cheng Y. Predicting of disease genes for gestational diabetes mellitus based on network and functional consistency. Eur J Obstet Gynecol Reprod Biol. 2015;186:91–6.CrossRefPubMed Zhang Q, He M, Wang J, Liu S, Cheng H, Cheng Y. Predicting of disease genes for gestational diabetes mellitus based on network and functional consistency. Eur J Obstet Gynecol Reprod Biol. 2015;186:91–6.CrossRefPubMed
9.
go back to reference Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS. Speeding disease gene discovery by sequence based candidate prioritization. BMC bioinformatics. 2005;6:55.CrossRefPubMedPubMedCentral Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS. Speeding disease gene discovery by sequence based candidate prioritization. BMC bioinformatics. 2005;6:55.CrossRefPubMedPubMedCentral
10.
go back to reference Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS. SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics. 2006;22(6):773–4.CrossRefPubMed Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS. SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics. 2006;22(6):773–4.CrossRefPubMed
11.
go back to reference Lopez-Bigas N, Ouzounis CA. Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res. 2004;32(10):3108–14.CrossRefPubMedPubMedCentral Lopez-Bigas N, Ouzounis CA. Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res. 2004;32(10):3108–14.CrossRefPubMedPubMedCentral
12.
go back to reference Zhang X, Acencio ML, Lemke N. Predicting essential genes and proteins based on machine learning and network topological features: a comprehensive review. Front Physiol. 2016;7:75.PubMedPubMedCentral Zhang X, Acencio ML, Lemke N. Predicting essential genes and proteins based on machine learning and network topological features: a comprehensive review. Front Physiol. 2016;7:75.PubMedPubMedCentral
13.
go back to reference Li M, Zhang J, Liu Q, Wang J, Wu FX. Prediction of disease-related genes based on weighted tissue-specific networks by using DNA methylation. BMC Med Genet. 2014;7(Suppl 2):S4. Li M, Zhang J, Liu Q, Wang J, Wu FX. Prediction of disease-related genes based on weighted tissue-specific networks by using DNA methylation. BMC Med Genet. 2014;7(Suppl 2):S4.
14.
go back to reference Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, Tadych A, Volfovsky N, Packer A, Lash A, Troyanskaya OG. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat Neurosci. 2016;19(11):1454–62.CrossRefPubMed Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, Tadych A, Volfovsky N, Packer A, Lash A, Troyanskaya OG. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat Neurosci. 2016;19(11):1454–62.CrossRefPubMed
15.
go back to reference Stempler S, Yizhak K, Ruppin E. Integrating transcriptomics with metabolic modeling predicts biomarkers and drug targets for Alzheimer's disease. PLoS One. 2014;9(8):e105383.CrossRefPubMedPubMedCentral Stempler S, Yizhak K, Ruppin E. Integrating transcriptomics with metabolic modeling predicts biomarkers and drug targets for Alzheimer's disease. PLoS One. 2014;9(8):e105383.CrossRefPubMedPubMedCentral
16.
17.
go back to reference Ochagavia ME, Miranda J, Nazabal M, Martin A, Novoa LI, Bringas R, Fernandez DECJ, Camacho H. A methodology based on molecular interactions and pathways to find candidate genes associated to diseases: its application to schizophrenia and Alzheimer's disease. J Bioinforma Comput Biol. 2011;9(4):541–57.CrossRef Ochagavia ME, Miranda J, Nazabal M, Martin A, Novoa LI, Bringas R, Fernandez DECJ, Camacho H. A methodology based on molecular interactions and pathways to find candidate genes associated to diseases: its application to schizophrenia and Alzheimer's disease. J Bioinforma Comput Biol. 2011;9(4):541–57.CrossRef
18.
go back to reference Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, Zhang R, Hartmann BM, Zaslavsky E, Sealfon SC, et al. Understanding multicellular function and disease with human tissue-specific networks. Nat Genet. 2015;47(6):569–76.CrossRefPubMedPubMedCentral Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, Zhang R, Hartmann BM, Zaslavsky E, Sealfon SC, et al. Understanding multicellular function and disease with human tissue-specific networks. Nat Genet. 2015;47(6):569–76.CrossRefPubMedPubMedCentral
19.
go back to reference Chen JJ, Roberson PK, Schell MJ. The false discovery rate: a key concept in large-scale genetic studies. Cancer control : journal of the Moffitt Cancer Center. 2010;17(1):58–62.CrossRef Chen JJ, Roberson PK, Schell MJ. The false discovery rate: a key concept in large-scale genetic studies. Cancer control : journal of the Moffitt Cancer Center. 2010;17(1):58–62.CrossRef
20.
go back to reference Gao H, Tao Y, He Q, Song F, Saffen D. Functional enrichment analysis of three Alzheimer's disease genome-wide association studies identities DAB1 as a novel candidate liability/protective gene. Biochem Biophys Res Commun. 2015;463(4):490–5.CrossRefPubMed Gao H, Tao Y, He Q, Song F, Saffen D. Functional enrichment analysis of three Alzheimer's disease genome-wide association studies identities DAB1 as a novel candidate liability/protective gene. Biochem Biophys Res Commun. 2015;463(4):490–5.CrossRefPubMed
21.
go back to reference Shang Z, Lv H, Zhang M, Duan L, Wang S, Li J, Liu G, Ruijie Z, Jiang Y. Genome-wide haplotype association study identify TNFRSF1A, CASP7, LRP1B, CDH1 and TG genes associated with Alzheimer's disease in Caribbean Hispanic individuals. Oncotarget. 2015;6(40):42504–14.CrossRefPubMedPubMedCentral Shang Z, Lv H, Zhang M, Duan L, Wang S, Li J, Liu G, Ruijie Z, Jiang Y. Genome-wide haplotype association study identify TNFRSF1A, CASP7, LRP1B, CDH1 and TG genes associated with Alzheimer's disease in Caribbean Hispanic individuals. Oncotarget. 2015;6(40):42504–14.CrossRefPubMedPubMedCentral
22.
go back to reference Chen JA, Wang Q, Davis-Turak J, Li Y, Karydas AM, Hsu SC, Sears RL, Chatzopoulou D, Huang AY, Wojta KJ, et al. A multiancestral genome-wide exome array study of Alzheimer disease, frontotemporal dementia, and progressive supranuclear palsy. JAMA neurology. 2015;72(4):414–22.CrossRefPubMedPubMedCentral Chen JA, Wang Q, Davis-Turak J, Li Y, Karydas AM, Hsu SC, Sears RL, Chatzopoulou D, Huang AY, Wojta KJ, et al. A multiancestral genome-wide exome array study of Alzheimer disease, frontotemporal dementia, and progressive supranuclear palsy. JAMA neurology. 2015;72(4):414–22.CrossRefPubMedPubMedCentral
23.
go back to reference Lee YH, Song GG. Genome-wide pathway analysis of a genome-wide association study on Alzheimer's disease. Neurol Sci. 2015;36(1):53–9.CrossRefPubMed Lee YH, Song GG. Genome-wide pathway analysis of a genome-wide association study on Alzheimer's disease. Neurol Sci. 2015;36(1):53–9.CrossRefPubMed
24.
go back to reference Lin Q, Cao Y, Gao J. Decreased expression of the APOA1-APOC3-APOA4 gene cluster is associated with risk of Alzheimer's disease. Drug design, development and therapy. 2015;9:5421–31.CrossRefPubMedPubMedCentral Lin Q, Cao Y, Gao J. Decreased expression of the APOA1-APOC3-APOA4 gene cluster is associated with risk of Alzheimer's disease. Drug design, development and therapy. 2015;9:5421–31.CrossRefPubMedPubMedCentral
25.
go back to reference Chaudhry M, Wang X, Bamne MN, Hasnain S, Demirci FY, Lopez OL, Kamboh MI. Genetic variation in imprinted genes is associated with risk of late-onset Alzheimer's disease. Journal of Alzheimer's disease : JAD. 2015;44(3):989–94.PubMedPubMedCentral Chaudhry M, Wang X, Bamne MN, Hasnain S, Demirci FY, Lopez OL, Kamboh MI. Genetic variation in imprinted genes is associated with risk of late-onset Alzheimer's disease. Journal of Alzheimer's disease : JAD. 2015;44(3):989–94.PubMedPubMedCentral
26.
go back to reference Chen W-H, Zhao X-M, van Noort V, Bork P. Human monogenic disease genes have frequently functionally redundant paralogs. PLoS Comput Biol. 2013;9(5):e1003073.CrossRefPubMedPubMedCentral Chen W-H, Zhao X-M, van Noort V, Bork P. Human monogenic disease genes have frequently functionally redundant paralogs. PLoS Comput Biol. 2013;9(5):e1003073.CrossRefPubMedPubMedCentral
27.
go back to reference Adebali O, Reznik AO, Ory DS, Zhulin IB. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations. Genetics in Medicine. 2016;18(10):1029.CrossRefPubMedPubMedCentral Adebali O, Reznik AO, Ory DS, Zhulin IB. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations. Genetics in Medicine. 2016;18(10):1029.CrossRefPubMedPubMedCentral
28.
go back to reference Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, Wildberg A, Gao D, Fung H-L, Chen S. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science. 2016;352(6293):1586–90.CrossRefPubMedPubMedCentral Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, Wildberg A, Gao D, Fung H-L, Chen S. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science. 2016;352(6293):1586–90.CrossRefPubMedPubMedCentral
29.
go back to reference Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez Banet J, Billis K, Garcia Giron C, Hourlier T et al. The Ensembl gene annotation system. Database : the journal of biological databases and curation. 2016;2016:baw093. Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez Banet J, Billis K, Garcia Giron C, Hourlier T et al. The Ensembl gene annotation system. Database : the journal of biological databases and curation. 2016;2016:baw093.
30.
go back to reference UniProt C. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(Database issue):D204–12. UniProt C. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(Database issue):D204–12.
31.
go back to reference Xiao Q, Liu Z-J, Tao S, Sun Y-M, Jiang D, Li H-L, Chen H, Liu X, Lapin B, Wang C-H. Risk prediction for sporadic Alzheimer's disease using genetic risk score in the Han Chinese population. Oncotarget. 2015;6(35):36955. Xiao Q, Liu Z-J, Tao S, Sun Y-M, Jiang D, Li H-L, Chen H, Liu X, Lapin B, Wang C-H. Risk prediction for sporadic Alzheimer's disease using genetic risk score in the Han Chinese population. Oncotarget. 2015;6(35):36955.
32.
go back to reference Malishkevich A, Marshall GA, Schultz AP, Sperling RA, Aharon-Peretz J, Gozes I. Blood-borne activity-dependent neuroprotective protein (ADNP) is correlated with premorbid intelligence, clinical stage, and Alzheimer’s disease biomarkers. J Alzheimers Dis. 2016;50(1):249-60. Malishkevich A, Marshall GA, Schultz AP, Sperling RA, Aharon-Peretz J, Gozes I. Blood-borne activity-dependent neuroprotective protein (ADNP) is correlated with premorbid intelligence, clinical stage, and Alzheimer’s disease biomarkers. J Alzheimers Dis. 2016;50(1):249-60.
33.
go back to reference Zheng X, Demirci F, Barmada M, Richardson G, Lopez O, Sweet R, Kamboh M, Feingold E. Genome-wide copy-number variation study of psychosis in Alzheimer’s disease. Transl Psychiatry. 2015;5(6):e574. Zheng X, Demirci F, Barmada M, Richardson G, Lopez O, Sweet R, Kamboh M, Feingold E. Genome-wide copy-number variation study of psychosis in Alzheimer’s disease. Transl Psychiatry. 2015;5(6):e574.
34.
go back to reference Marchesi VT. Gain-of-function somatic mutations contribute to inflammation and blood vessel damage that lead to Alzheimer dementia: a hypothesis. FASEB J. 2016;30(2):503-6. Marchesi VT. Gain-of-function somatic mutations contribute to inflammation and blood vessel damage that lead to Alzheimer dementia: a hypothesis. FASEB J. 2016;30(2):503-6.
Metadata
Title
Revealing Alzheimer’s disease genes spectrum in the whole-genome by machine learning
Authors
Xiaoyan Huang
Hankui Liu
Xinming Li
Liping Guan
Jiankang Li
Laurent Christian Asker M. Tellier
Huanming Yang
Jian Wang
Jianguo Zhang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2018
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-017-1010-3

Other articles of this Issue 1/2018

BMC Neurology 1/2018 Go to the issue