Skip to main content
Top
Published in: BMC Neurology 1/2017

Open Access 01-12-2017 | Research article

The relationship between lower limb muscle volume and body mass in ambulant individuals with bilateral cerebral palsy

Authors: Jonathan J. Noble, Emily Chruscikowski, Nicola R. D. Fry, Andrew P. Lewis, Martin Gough, Adam P. Shortland

Published in: BMC Neurology | Issue 1/2017

Login to get access

Abstract

Background

Individuals with cerebral palsy have smaller muscle volumes normalised to body mass than their typically developing peers. The aim of this study is to investigate the relationship between lower limb muscle volume and body mass in young people with bilateral cerebral palsy and their typically developing peers.

Methods

Twenty-five participants with bilateral cerebral palsy (aged 14.7±3.0 years, GMFCS level I-III) and 25 of their typically developing peers (aged 16.8±3.3 years) took part in this study. None of the participants had undergone orthopaedic surgery, botulinum toxin injections, or serial casting in the previous year. All participants underwent magnetic resonance imaging of both lower limbs. Nine major muscles of each lower limb were individually manually segmented and the muscle volumes calculated.

Results

Body mass and total lower limb muscle volume were significantly linearly related in both the cerebral palsy (R2 = 0.75, p<0.001) and typically developing (R2 = 0.77, p<0.001) groups. The slope of the relationship between muscle volume and body mass was significantly shallower in the cerebral palsy group compared to the typically developing group (p=0.007).

Conclusions

This cross-sectional study suggests that the increase in size of lower limb muscles relative to body mass is reduced in adolescents and young adults with cerebral palsy. Longitudinal studies are required to further investigate altered muscle growth trajectories in this group and their impact on long-term mobility.
Appendix
Available only for authorised users
Literature
1.
go back to reference Surveillance of Cerebral Palsy in E: Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Surveillance of Cerebral Palsy in Europe (SCPE). Dev Med Child Neurol 2000, 42(12):816–824. Surveillance of Cerebral Palsy in E: Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Surveillance of Cerebral Palsy in Europe (SCPE). Dev Med Child Neurol 2000, 42(12):816–824.
2.
go back to reference Surman G, Bonellie S, Chalmers J, Colver A, Dolk H, Hemming K, King A, Kurinczuk JJ, Parkes J, Platt MJ. UKCP: a collaborative network of cerebral palsy registers in the United Kingdom. J Public Health (Oxf). 2006;28(2):148–56.CrossRef Surman G, Bonellie S, Chalmers J, Colver A, Dolk H, Hemming K, King A, Kurinczuk JJ, Parkes J, Platt MJ. UKCP: a collaborative network of cerebral palsy registers in the United Kingdom. J Public Health (Oxf). 2006;28(2):148–56.CrossRef
3.
go back to reference Arneson CL, Durkin MS, Benedict RE, Kirby RS, Yeargin-Allsopp M, Van Naarden Braun K, Doernberg NS. Prevalence of cerebral palsy: autism and developmental disabilities monitoring network, three sites, United States, 2004. Disabil Health J. 2009;2(1):45–8.CrossRefPubMed Arneson CL, Durkin MS, Benedict RE, Kirby RS, Yeargin-Allsopp M, Van Naarden Braun K, Doernberg NS. Prevalence of cerebral palsy: autism and developmental disabilities monitoring network, three sites, United States, 2004. Disabil Health J. 2009;2(1):45–8.CrossRefPubMed
5.
go back to reference Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14.PubMed Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14.PubMed
6.
go back to reference Hanna SE, Rosenbaum PL, Bartlett DJ, Palisano RJ, Walter SD, Avery L, Russell DJ. Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Dev Med Child Neurol. 2009;51(4):295–302.CrossRefPubMed Hanna SE, Rosenbaum PL, Bartlett DJ, Palisano RJ, Walter SD, Avery L, Russell DJ. Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Dev Med Child Neurol. 2009;51(4):295–302.CrossRefPubMed
7.
go back to reference Day SM, YW W, Strauss DJ, Shavelle RM, Reynolds RJ. Change in ambulatory ability of adolescents and young adults with cerebral palsy. Dev Med Child Neurol. 2007;49(9):647–53.CrossRefPubMed Day SM, YW W, Strauss DJ, Shavelle RM, Reynolds RJ. Change in ambulatory ability of adolescents and young adults with cerebral palsy. Dev Med Child Neurol. 2007;49(9):647–53.CrossRefPubMed
8.
go back to reference Strauss D, Ojdana K, Shavelle R, Rosenbloom L. Decline in function and life expectancy of older persons with cerebral palsy. Neuro Rehabilitation. 2004;19(1):69–78.PubMed Strauss D, Ojdana K, Shavelle R, Rosenbloom L. Decline in function and life expectancy of older persons with cerebral palsy. Neuro Rehabilitation. 2004;19(1):69–78.PubMed
9.
go back to reference Davids JR, Oeffinger DJ, Bagley AM, Sison-Williamson M, Gorton G. Relationship of strength, weight, age, and function in ambulatory children with cerebral palsy. J Pediatr Orthop. 2015;35(5):523–9.CrossRefPubMed Davids JR, Oeffinger DJ, Bagley AM, Sison-Williamson M, Gorton G. Relationship of strength, weight, age, and function in ambulatory children with cerebral palsy. J Pediatr Orthop. 2015;35(5):523–9.CrossRefPubMed
10.
go back to reference Reid SL, Pitcher CA, Williams SA, Licari MK, Valentine JP, Shipman PJ, Elliott CM. Does muscle size matter? The relationship between muscle size and strength in children with cerebral palsy. Disabil Rehabil. 2015;37(7):579–84.CrossRefPubMed Reid SL, Pitcher CA, Williams SA, Licari MK, Valentine JP, Shipman PJ, Elliott CM. Does muscle size matter? The relationship between muscle size and strength in children with cerebral palsy. Disabil Rehabil. 2015;37(7):579–84.CrossRefPubMed
11.
go back to reference Handsfield GG, Meyer CH, Hart JM, Abel MF, Blemker SS. Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J Biomech. 2014;47(3):631–8.CrossRefPubMed Handsfield GG, Meyer CH, Hart JM, Abel MF, Blemker SS. Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J Biomech. 2014;47(3):631–8.CrossRefPubMed
12.
go back to reference Noble JJ, Fry NR, Lewis AP, Keevil SF, Gough M, Shortland AP. Lower limb muscle volumes in bilateral spastic cerebral palsy. Brain and Development. 2014;36(4):294–300.CrossRefPubMed Noble JJ, Fry NR, Lewis AP, Keevil SF, Gough M, Shortland AP. Lower limb muscle volumes in bilateral spastic cerebral palsy. Brain and Development. 2014;36(4):294–300.CrossRefPubMed
13.
go back to reference Malaiya R, McNee AE, Fry NR, Eve LC, Gough M, Shortland AP. The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kinesiol. 2007;17(6):657–63.CrossRefPubMed Malaiya R, McNee AE, Fry NR, Eve LC, Gough M, Shortland AP. The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kinesiol. 2007;17(6):657–63.CrossRefPubMed
14.
go back to reference Barber L, Hastings-Ison T, Baker R, Barrett R, Lichtwark G. Medial gastrocnemius muscle volume and fascicle length in children aged 2 to 5 years with cerebral palsy. Dev Med Child Neurol. 2011;53(6):543–8.CrossRefPubMed Barber L, Hastings-Ison T, Baker R, Barrett R, Lichtwark G. Medial gastrocnemius muscle volume and fascicle length in children aged 2 to 5 years with cerebral palsy. Dev Med Child Neurol. 2011;53(6):543–8.CrossRefPubMed
15.
go back to reference Fry NR, Gough M, McNee AE, Shortland AP. Changes in the volume and length of the medial gastrocnemius after surgical recession in children with spastic diplegic cerebral palsy. J Pediatr Orthop. 2007;27(7):769–74.CrossRefPubMed Fry NR, Gough M, McNee AE, Shortland AP. Changes in the volume and length of the medial gastrocnemius after surgical recession in children with spastic diplegic cerebral palsy. J Pediatr Orthop. 2007;27(7):769–74.CrossRefPubMed
16.
go back to reference Oberhofer K, Stott NS, Mithraratne K, Anderson IA. Subject-specific modelling of lower limb muscles in children with cerebral palsy. Clin Biomech (Bristol, Avon). 2010;25(1):88–94.CrossRef Oberhofer K, Stott NS, Mithraratne K, Anderson IA. Subject-specific modelling of lower limb muscles in children with cerebral palsy. Clin Biomech (Bristol, Avon). 2010;25(1):88–94.CrossRef
17.
go back to reference Handsfield GG, Meyer CH, Abel MF, Blemker SS. Heterogeneity of muscle sizes in the lower limbs of children with cerebral palsy. Muscle Nerve. 2016;53(6):933–45.CrossRefPubMed Handsfield GG, Meyer CH, Abel MF, Blemker SS. Heterogeneity of muscle sizes in the lower limbs of children with cerebral palsy. Muscle Nerve. 2016;53(6):933–45.CrossRefPubMed
18.
go back to reference Herskind A, Ritterband-Rosenbaum A, Willerslev-Olsen M, Lorentzen J, Hanson L, Lichtwark G, Nielsen JB. Muscle growth is reduced in 15-month-old children with cerebral palsy. Dev Med Child Neurol. 2015; Herskind A, Ritterband-Rosenbaum A, Willerslev-Olsen M, Lorentzen J, Hanson L, Lichtwark G, Nielsen JB. Muscle growth is reduced in 15-month-old children with cerebral palsy. Dev Med Child Neurol. 2015;
19.
go back to reference Barber LA, Read F, Lovatt Stern J, Lichtwark G, Boyd RN. Medial gastrocnemius muscle volume in ambulant children with unilateral and bilateral cerebral palsy aged 2 to 9 years. Dev Med Child Neurol. 2016; Barber LA, Read F, Lovatt Stern J, Lichtwark G, Boyd RN. Medial gastrocnemius muscle volume in ambulant children with unilateral and bilateral cerebral palsy aged 2 to 9 years. Dev Med Child Neurol. 2016;
20.
21.
go back to reference Shortland A. Muscle deficits in cerebral palsy and early loss of mobility: can we learn something from our elders? Dev Med Child Neurol. 2009;51(Suppl 4):59–63.CrossRefPubMed Shortland A. Muscle deficits in cerebral palsy and early loss of mobility: can we learn something from our elders? Dev Med Child Neurol. 2009;51(Suppl 4):59–63.CrossRefPubMed
22.
go back to reference Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol. 2000;89(1):81–8.CrossRefPubMed Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol. 2000;89(1):81–8.CrossRefPubMed
23.
go back to reference Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889–96.CrossRefPubMed Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889–96.CrossRefPubMed
24.
go back to reference Jahnsen R, Villien L, Egeland T, Stanghelle JK, Holm I. Locomotion skills in adults with cerebral palsy. Clin Rehabil. 2004;18(3):309–16.CrossRefPubMed Jahnsen R, Villien L, Egeland T, Stanghelle JK, Holm I. Locomotion skills in adults with cerebral palsy. Clin Rehabil. 2004;18(3):309–16.CrossRefPubMed
25.
Metadata
Title
The relationship between lower limb muscle volume and body mass in ambulant individuals with bilateral cerebral palsy
Authors
Jonathan J. Noble
Emily Chruscikowski
Nicola R. D. Fry
Andrew P. Lewis
Martin Gough
Adam P. Shortland
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2017
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-017-1005-0

Other articles of this Issue 1/2017

BMC Neurology 1/2017 Go to the issue