Skip to main content
Top
Published in: BMC Neurology 1/2016

Open Access 01-12-2016 | Research article

The effect of nucleus basalis magnocellularis deep brain stimulation on memory function in a rat model of dementia

Authors: Ji Eun Lee, Da Un Jeong, Jihyeon Lee, Won Seok Chang, Jin Woo Chang

Published in: BMC Neurology | Issue 1/2016

Login to get access

Abstract

Background

Deep brain stimulation has recently been considered a potential therapy in improving memory function. It has been shown that a change of neurotransmitters has an effect on memory function. However, much about the exact underlying neural mechanism is not yet completely understood.
We therefore examined changes in neurotransmitter systems and spatial memory caused by stimulation of nucleus basalis magnocellularis in a rat model of dementia.

Methods

We divided rats into four groups: Normal, Lesion, Implantation, and Stimulation. We used 192 IgG-saporin for degeneration of basal forebrain cholinergic neuron related with learning and memory and it was injected into all rats except for the normal group. An electrode was ipsilaterally inserted in the nucleus basalis magnocellularis of all rats of the implantation and stimulation group, and the stimulation group received the electrical stimulation. Features were verified by the Morris water maze, immunochemistry and western blotting.

Results

All groups showed similar performances during Morris water maze training. During the probe trial, performance of the lesion and implantation group decreased. However, the stimulation group showed an equivalent performance to the normal group. In the lesion and implantation group, expression of glutamate acid decarboxylase65&67 decreased in the medial prefrontal cortex and expression of glutamate transporters increased in the medial prefrontal cortex and hippocampus. However, expression of the stimulation group showed similar levels as the normal group.

Conclusion

The results suggest that nucleus basalis magnocellularis stimulation enhances consolidation and retrieval of visuospatial memory related to changes of glutamate acid decarboxylase65&67 and glutamate transporter.
Literature
1.
go back to reference Yao H, Liu Y, Zhou B, Zhang Z, An N, Wang P, et al. Decreased functional connectivity of the amygdala in Alzheimer’s disease revealed by resting-state fMRI. Eur J Radiol. 2013;82:1531–8.CrossRefPubMed Yao H, Liu Y, Zhou B, Zhang Z, An N, Wang P, et al. Decreased functional connectivity of the amygdala in Alzheimer’s disease revealed by resting-state fMRI. Eur J Radiol. 2013;82:1531–8.CrossRefPubMed
2.
go back to reference Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, et al. Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem. 1995;64:749–60.CrossRefPubMed Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, et al. Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem. 1995;64:749–60.CrossRefPubMed
3.
go back to reference Kasa P, Rakonczay Z, Gulya K. The cholinergic system in Alzheimer’s disease. Prog Neurobiol. 1997;52:511–35.CrossRefPubMed Kasa P, Rakonczay Z, Gulya K. The cholinergic system in Alzheimer’s disease. Prog Neurobiol. 1997;52:511–35.CrossRefPubMed
4.
go back to reference Toledano A, Alvarez MI. Lesions and dysfunctions of the nucleus basalis as Alzheimer’s disease models: general and critical overview and analysis of the long-term changes in several excitotoxic models. Curr Alzheimer Res. 2004;1:189–214.CrossRefPubMed Toledano A, Alvarez MI. Lesions and dysfunctions of the nucleus basalis as Alzheimer’s disease models: general and critical overview and analysis of the long-term changes in several excitotoxic models. Curr Alzheimer Res. 2004;1:189–214.CrossRefPubMed
5.
go back to reference Wichmann T, Delong MR. Deep brain stimulation for neurologic and neuropsychiatric disorders. Neuron. 2006;52:197–204.CrossRefPubMed Wichmann T, Delong MR. Deep brain stimulation for neurologic and neuropsychiatric disorders. Neuron. 2006;52:197–204.CrossRefPubMed
6.
go back to reference Abdulla FA, Abu-Bakra MA, Calaminici MR, Stephenson JD, Sinden JD. Importance of forebrain cholinergic and GABAergic systems to the age-related deficits in water maze performance of rats. Neurobiol Aging. 1995;16:41–52.CrossRefPubMed Abdulla FA, Abu-Bakra MA, Calaminici MR, Stephenson JD, Sinden JD. Importance of forebrain cholinergic and GABAergic systems to the age-related deficits in water maze performance of rats. Neurobiol Aging. 1995;16:41–52.CrossRefPubMed
7.
go back to reference Freund HJ, Kuhn J, Lenartz D, Mai JK, Schnell T, Klosterkoetter J, et al. Cognitive functions in a patient with Parkinson-dementia syndrome undergoing deep brain stimulation. Arch Neurol. 2009;66:781–5.CrossRefPubMed Freund HJ, Kuhn J, Lenartz D, Mai JK, Schnell T, Klosterkoetter J, et al. Cognitive functions in a patient with Parkinson-dementia syndrome undergoing deep brain stimulation. Arch Neurol. 2009;66:781–5.CrossRefPubMed
8.
go back to reference Neuhaus AH, Bajbouj M. Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med. 2012;366:1945. author reply 1946.CrossRefPubMed Neuhaus AH, Bajbouj M. Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med. 2012;366:1945. author reply 1946.CrossRefPubMed
9.
go back to reference Hamani C, McAndrews MP, Cohn M, Oh M, Zumsteg D, Shapiro CM, et al. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol. 2008;63:119–23.CrossRefPubMed Hamani C, McAndrews MP, Cohn M, Oh M, Zumsteg D, Shapiro CM, et al. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol. 2008;63:119–23.CrossRefPubMed
10.
go back to reference Wiley RG, Oeltmann TN, Lappi DA. Immunolesioning: selective destruction of neurons using immunotoxin to rat NGF receptor. Brain Res. 1991;562:149–53.CrossRefPubMed Wiley RG, Oeltmann TN, Lappi DA. Immunolesioning: selective destruction of neurons using immunotoxin to rat NGF receptor. Brain Res. 1991;562:149–53.CrossRefPubMed
11.
go back to reference Wrenn CC, Wiley RG. The behavioral functions of the cholinergic basal forebrain: lessons from 192 IgG-saporin. Int J Dev Neurosci. 1998;16:595–602.CrossRefPubMed Wrenn CC, Wiley RG. The behavioral functions of the cholinergic basal forebrain: lessons from 192 IgG-saporin. Int J Dev Neurosci. 1998;16:595–602.CrossRefPubMed
12.
go back to reference Berger-Sweeney J, Stearns NA, Murg SL, Floerke-Nashner LR, Lappi DA, Baxter MG. Selective immunolesions of cholinergic neurons in mice: effects on neuroanatomy, neurochemistry, and behavior. J Neurosci. 2001;21:8164–73.PubMed Berger-Sweeney J, Stearns NA, Murg SL, Floerke-Nashner LR, Lappi DA, Baxter MG. Selective immunolesions of cholinergic neurons in mice: effects on neuroanatomy, neurochemistry, and behavior. J Neurosci. 2001;21:8164–73.PubMed
13.
go back to reference Frick KM, Kim JJ, Baxter MG. Effects of complete immunotoxin lesions of the cholinergic basal forebrain on fear conditioning and spatial learning. Hippocampus. 2004;14:244–54.CrossRefPubMed Frick KM, Kim JJ, Baxter MG. Effects of complete immunotoxin lesions of the cholinergic basal forebrain on fear conditioning and spatial learning. Hippocampus. 2004;14:244–54.CrossRefPubMed
14.
go back to reference Vuckovich JA, Semel ME, Baxter MG. Extensive lesions of cholinergic basal forebrain neurons do not impair spatial working memory. Learning & memory (Cold Spring Harbor, NY). 2004;11:87–94.CrossRef Vuckovich JA, Semel ME, Baxter MG. Extensive lesions of cholinergic basal forebrain neurons do not impair spatial working memory. Learning & memory (Cold Spring Harbor, NY). 2004;11:87–94.CrossRef
15.
go back to reference Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, et al. The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci Biobehav Rev. 2013;37:2676–88.CrossRefPubMed Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, et al. The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci Biobehav Rev. 2013;37:2676–88.CrossRefPubMed
16.
go back to reference Detari L, Rasmusson DD, Semba K. The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Prog Neurobiol. 1999;58:249–77.CrossRefPubMed Detari L, Rasmusson DD, Semba K. The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Prog Neurobiol. 1999;58:249–77.CrossRefPubMed
17.
go back to reference Vale-Martinez A, Guillazo-Blanch G, Marti-Nicolovius M, Nadal R, Arevalo-Garcia R, Morgado-Bernal I. Electrolytic and ibotenic acid lesions of the nucleus basalis magnocellularis interrupt long-term retention, but not acquisition of two-way active avoidance, in rats. Experimental brain research Experimentelle Hirnforschung Experimentation cerebrale. 2002;142:52–66.CrossRefPubMed Vale-Martinez A, Guillazo-Blanch G, Marti-Nicolovius M, Nadal R, Arevalo-Garcia R, Morgado-Bernal I. Electrolytic and ibotenic acid lesions of the nucleus basalis magnocellularis interrupt long-term retention, but not acquisition of two-way active avoidance, in rats. Experimental brain research Experimentelle Hirnforschung Experimentation cerebrale. 2002;142:52–66.CrossRefPubMed
18.
go back to reference Wenk GL. The nucleus basalis magnocellularis cholinergic system: one hundred years of progress. Neurobiol Learn Mem. 1997;67:85–95.CrossRefPubMed Wenk GL. The nucleus basalis magnocellularis cholinergic system: one hundred years of progress. Neurobiol Learn Mem. 1997;67:85–95.CrossRefPubMed
19.
go back to reference Murray CL, Fibiger HC. Learning and memory deficits after lesions of the nucleus basalis magnocellularis: reversal by physostigmine. Neuroscience. 1985;14:1025–32.CrossRefPubMed Murray CL, Fibiger HC. Learning and memory deficits after lesions of the nucleus basalis magnocellularis: reversal by physostigmine. Neuroscience. 1985;14:1025–32.CrossRefPubMed
20.
go back to reference Bartus RT, Flicker C, Dean RL, Pontecorvo M, Figueiredo JC, Fisher SK. Selective memory loss following nucleus basalis lesions: long term behavioral recovery despite persistent cholinergic deficiencies. Pharmacol Biochem Behav. 1985;23:125–35.CrossRefPubMed Bartus RT, Flicker C, Dean RL, Pontecorvo M, Figueiredo JC, Fisher SK. Selective memory loss following nucleus basalis lesions: long term behavioral recovery despite persistent cholinergic deficiencies. Pharmacol Biochem Behav. 1985;23:125–35.CrossRefPubMed
21.
go back to reference Montero-Pastor A, Vale-Martinez A, Guillazo-Blanch G, Nadal-Alemany R, Marti-Nicolovius M, Morgado-Bernal I. Nucleus basalis magnocellularis electrical stimulation facilitates two-way active avoidance retention, in rats. Brain Res. 2001;900:337–41.CrossRefPubMed Montero-Pastor A, Vale-Martinez A, Guillazo-Blanch G, Nadal-Alemany R, Marti-Nicolovius M, Morgado-Bernal I. Nucleus basalis magnocellularis electrical stimulation facilitates two-way active avoidance retention, in rats. Brain Res. 2001;900:337–41.CrossRefPubMed
22.
go back to reference Montero-Pastor A, Vale-Martinez A, Guillazo-Blanch G, Marti-Nicolovius M. Effects of electrical stimulation of the nucleus basalis on two-way active avoidance acquisition, retention, and retrieval. Behav Brain Res. 2004;154:41–54.CrossRefPubMed Montero-Pastor A, Vale-Martinez A, Guillazo-Blanch G, Marti-Nicolovius M. Effects of electrical stimulation of the nucleus basalis on two-way active avoidance acquisition, retention, and retrieval. Behav Brain Res. 2004;154:41–54.CrossRefPubMed
23.
go back to reference Schumacher A, de Vasconcelos AP, Lecourtier L, Moser A, Cassel JC. Electrical high frequency stimulation in the dorsal striatum: Effects on response learning and on GABA levels in rats. Behav Brain Res. 2011;222:368–74.CrossRefPubMed Schumacher A, de Vasconcelos AP, Lecourtier L, Moser A, Cassel JC. Electrical high frequency stimulation in the dorsal striatum: Effects on response learning and on GABA levels in rats. Behav Brain Res. 2011;222:368–74.CrossRefPubMed
24.
go back to reference Paxinos GWC. The Rat brain in stereotaxic coordinates. 6th ed. San Diego: Elsevier Academic Press; 2007. Paxinos GWC. The Rat brain in stereotaxic coordinates. 6th ed. San Diego: Elsevier Academic Press; 2007.
25.
go back to reference Ellman GL, Courtney KD, Andres Jr V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.CrossRefPubMed Ellman GL, Courtney KD, Andres Jr V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.CrossRefPubMed
26.
go back to reference Kuhn J, Hardenacke K, Lenartz D, Gruendler T, Ullsperger M, Bartsch C, et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol Psychiatry. 2015;20:353–60.CrossRefPubMed Kuhn J, Hardenacke K, Lenartz D, Gruendler T, Ullsperger M, Bartsch C, et al. Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol Psychiatry. 2015;20:353–60.CrossRefPubMed
27.
go back to reference Leon WC, Bruno MA, Allard S, Nader K, Cuello AC. Engagement of the PFC in consolidation and recall of recent spatial memory. Learning & memory (Cold Spring Harbor, NY). 2010;17:297–305.CrossRef Leon WC, Bruno MA, Allard S, Nader K, Cuello AC. Engagement of the PFC in consolidation and recall of recent spatial memory. Learning & memory (Cold Spring Harbor, NY). 2010;17:297–305.CrossRef
28.
go back to reference Wang GW, Cai JX. Disconnection of the hippocampal-prefrontal cortical circuits impairs spatial working memory performance in rats. Behav Brain Res. 2006;175:329–36.CrossRefPubMed Wang GW, Cai JX. Disconnection of the hippocampal-prefrontal cortical circuits impairs spatial working memory performance in rats. Behav Brain Res. 2006;175:329–36.CrossRefPubMed
29.
go back to reference Yoon T, Okada J, Jung MW, Kim JJ. Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learning & memory (Cold Spring Harbor, NY). 2008;15:97–105.CrossRef Yoon T, Okada J, Jung MW, Kim JJ. Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learning & memory (Cold Spring Harbor, NY). 2008;15:97–105.CrossRef
30.
go back to reference Maviel T, Durkin TP, Menzaghi F, Bontempi B. Sites of neocortical reorganization critical for remote spatial memory. Science (New York, NY). 2004;305:96–9.CrossRef Maviel T, Durkin TP, Menzaghi F, Bontempi B. Sites of neocortical reorganization critical for remote spatial memory. Science (New York, NY). 2004;305:96–9.CrossRef
31.
go back to reference Jo YS, Park EH, Kim IH, Park SK, Kim H, Kim HT, et al. The medial prefrontal cortex is involved in spatial memory retrieval under partial-cue conditions. J Neurosci. 2007;27:13567–78.CrossRefPubMed Jo YS, Park EH, Kim IH, Park SK, Kim H, Kim HT, et al. The medial prefrontal cortex is involved in spatial memory retrieval under partial-cue conditions. J Neurosci. 2007;27:13567–78.CrossRefPubMed
32.
go back to reference Lee I, Kesner RP. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci. 2002;5:162–8.CrossRefPubMed Lee I, Kesner RP. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci. 2002;5:162–8.CrossRefPubMed
33.
go back to reference Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S. NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci. 2004;5:361–72.CrossRefPubMed Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S. NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci. 2004;5:361–72.CrossRefPubMed
34.
go back to reference Iversen LL, Bloom FE. Studies of the uptake of 3 H-gaba and (3 H)glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 1972;41:131–43.CrossRefPubMed Iversen LL, Bloom FE. Studies of the uptake of 3 H-gaba and (3 H)glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 1972;41:131–43.CrossRefPubMed
35.
go back to reference Sivilotti L, Nistri A. GABA receptor mechanisms in the central nervous system. Prog Neurobiol. 1991;36:35–92.CrossRefPubMed Sivilotti L, Nistri A. GABA receptor mechanisms in the central nervous system. Prog Neurobiol. 1991;36:35–92.CrossRefPubMed
36.
go back to reference Kim HJ, Routtenberg A. Retention disruption following post-trial picrotoxin injection into the substantia nigra. Brain Res. 1976;113:620–5.CrossRefPubMed Kim HJ, Routtenberg A. Retention disruption following post-trial picrotoxin injection into the substantia nigra. Brain Res. 1976;113:620–5.CrossRefPubMed
37.
go back to reference Rossi AO. Genetics of learning disabilities. Behav Neuropsychiatry. 1972;4:2–7.PubMed Rossi AO. Genetics of learning disabilities. Behav Neuropsychiatry. 1972;4:2–7.PubMed
38.
go back to reference Lecourtier L, de Vasconcelos AP, Leroux E, Cosquer B, Geiger K, Lithfous S, et al. Septohippocampal pathways contribute to system consolidation of a spatial memory: sequential implication of GABAergic and cholinergic neurons. Hippocampus. 2011;21:1277–89.CrossRefPubMed Lecourtier L, de Vasconcelos AP, Leroux E, Cosquer B, Geiger K, Lithfous S, et al. Septohippocampal pathways contribute to system consolidation of a spatial memory: sequential implication of GABAergic and cholinergic neurons. Hippocampus. 2011;21:1277–89.CrossRefPubMed
39.
go back to reference Jimenez-Capdeville ME, Dykes RW, Myasnikov AA. Differential control of cortical activity by the basal forebrain in rats: a role for both cholinergic and inhibitory influences. J Comp Neurol. 1997;381:53–67.CrossRefPubMed Jimenez-Capdeville ME, Dykes RW, Myasnikov AA. Differential control of cortical activity by the basal forebrain in rats: a role for both cholinergic and inhibitory influences. J Comp Neurol. 1997;381:53–67.CrossRefPubMed
40.
go back to reference Manns ID, Alonso A, Jones BE. Rhythmically discharging basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells. J Neurophysiol. 2003;89:1057–66.CrossRefPubMed Manns ID, Alonso A, Jones BE. Rhythmically discharging basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells. J Neurophysiol. 2003;89:1057–66.CrossRefPubMed
41.
go back to reference Jouvenceau A, Billard JM, Lamour Y, Dutar P. Potentiation of glutamatergic EPSPs in rat CA1 hippocampal neurons after selective cholinergic denervation by 192 IgG-saporin. Synapse (New York, NY). 1997;26:292–300.CrossRef Jouvenceau A, Billard JM, Lamour Y, Dutar P. Potentiation of glutamatergic EPSPs in rat CA1 hippocampal neurons after selective cholinergic denervation by 192 IgG-saporin. Synapse (New York, NY). 1997;26:292–300.CrossRef
42.
go back to reference Marcaggi P, Billups D, Attwell D. The role of glial glutamate transporters in maintaining the independent operation of juvenile mouse cerebellar parallel fibre synapses. J Physiol. 2003;552:89–107.CrossRefPubMedPubMedCentral Marcaggi P, Billups D, Attwell D. The role of glial glutamate transporters in maintaining the independent operation of juvenile mouse cerebellar parallel fibre synapses. J Physiol. 2003;552:89–107.CrossRefPubMedPubMedCentral
43.
go back to reference McIntyre CK, Marriott LK, Gold PE. Cooperation between memory systems: acetylcholine release in the amygdala correlates positively with performance on a hippocampus-dependent task. Behav Neurosci. 2003;117:320–6.CrossRefPubMed McIntyre CK, Marriott LK, Gold PE. Cooperation between memory systems: acetylcholine release in the amygdala correlates positively with performance on a hippocampus-dependent task. Behav Neurosci. 2003;117:320–6.CrossRefPubMed
44.
go back to reference Parent MB, Baxter MG. Septohippocampal acetylcholine: involved in but not necessary for learning and memory? Learning & memory (Cold Spring Harbor, NY). 2004;11:9–20.CrossRef Parent MB, Baxter MG. Septohippocampal acetylcholine: involved in but not necessary for learning and memory? Learning & memory (Cold Spring Harbor, NY). 2004;11:9–20.CrossRef
Metadata
Title
The effect of nucleus basalis magnocellularis deep brain stimulation on memory function in a rat model of dementia
Authors
Ji Eun Lee
Da Un Jeong
Jihyeon Lee
Won Seok Chang
Jin Woo Chang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2016
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-016-0529-z

Other articles of this Issue 1/2016

BMC Neurology 1/2016 Go to the issue