Skip to main content
Top
Published in: BMC Neurology 1/2015

Open Access 01-12-2015 | Debate

“Microglial nodules” and “newly forming lesions” may be a Janus face of early MS lesions; implications from virus-induced demyelination, the Inside-Out model

Authors: Fumitaka Sato, Nicholas E. Martinez, Elaine Cliburn Stewart, Seiichi Omura, J. Steven Alexander, Ikuo Tsunoda

Published in: BMC Neurology | Issue 1/2015

Login to get access

Abstract

Background

Although the precise mechanism of initial lesion development in multiple sclerosis (MS) remains unclear, two different neuropathological findings have been reported as a potential early pathology of MS: “microglial nodules” and “newly forming lesions”, both of which contain neither T cell infiltration nor demyelination. In microglial nodules, damaged axons were associated with a small number of aggregated macrophages/microglia, while oligodendrocyte apoptosis was a characteristic in newly forming lesions. However, is the presence of “microglial nodules” and “oligodendrogliopathy” mutually exclusive? Might these two different observations be the same neuropathology (as proposed by the concept, “preactive lesions”), but interpreted differently based on the different theories of early MS lesion development, using different staining methods?

Discussion

Since two studies are looking at two distinct aspects of early MS pathogenesis (one focused on axons and the other on oligodendrocytes), in a sense, one can say that these two studies are complementary. On the other hand, experimentally, Wallerian degeneration (WD) has been demonstrated to induce both microglial nodules and oligodendrocyte apoptosis in the central nervous system (CNS). Here, when encephalitogenic T cells are present in the periphery in both autoimmune and viral models of MS, induction of WD in the CNS has been shown to result in the recruitment of T cells along the degenerated tract, leading to demyelination (Inside-Out model). These experimental findings are consistent with early MS pathology described by both “microglial nodules” and “newly forming lesions”.

Conclusions

The differences between the two neuropathological findings may be based on the preference of staining methods, where one group observed axonal and microglial pathology and the other observed oligodendrocyte apoptosis; a Janus face that is looked at from the two different sides.
Literature
1.
go back to reference Singh S, Metz I, Amor S, van der Valk P, Stadelmann C, Brück W. Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol. 2013;125(4):595–608.CrossRefPubMedPubMedCentral Singh S, Metz I, Amor S, van der Valk P, Stadelmann C, Brück W. Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol. 2013;125(4):595–608.CrossRefPubMedPubMedCentral
2.
go back to reference Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol. 2004;55(4):458–68.CrossRefPubMed Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol. 2004;55(4):458–68.CrossRefPubMed
3.
go back to reference van Horssen J, Singh S, van der Pol S, Kipp M, Lim JL, Peferoen L, et al. Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflammation. 2012;9:156.PubMedPubMedCentral van Horssen J, Singh S, van der Pol S, Kipp M, Lim JL, Peferoen L, et al. Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflammation. 2012;9:156.PubMedPubMedCentral
4.
go back to reference Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–17.CrossRefPubMed Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–17.CrossRefPubMed
5.
go back to reference Tsunoda I, Fujinami RS. Inside-Out versus Outside-In models for virus induced demyelination: axonal damage triggering demyelination. Springer Semin Immunopathol. 2002;24(2):105–25.CrossRefPubMed Tsunoda I, Fujinami RS. Inside-Out versus Outside-In models for virus induced demyelination: axonal damage triggering demyelination. Springer Semin Immunopathol. 2002;24(2):105–25.CrossRefPubMed
6.
go back to reference Abe Y, Yamamoto T, Sugiyama Y, Watanabe T, Saito N, Kayama H, et al. Apoptotic cells associated with Wallerian degeneration after experimental spinal cord injury: a possible mechanism of oligodendroglial death. J Neurotrauma. 1999;16(10):945–52.CrossRefPubMed Abe Y, Yamamoto T, Sugiyama Y, Watanabe T, Saito N, Kayama H, et al. Apoptotic cells associated with Wallerian degeneration after experimental spinal cord injury: a possible mechanism of oligodendroglial death. J Neurotrauma. 1999;16(10):945–52.CrossRefPubMed
7.
go back to reference Criste G, Trapp B, Dutta R. Axonal loss in multiple sclerosis: causes and mechanisms. Handb Clin Neurol. 2014;122:101–13.CrossRefPubMed Criste G, Trapp B, Dutta R. Axonal loss in multiple sclerosis: causes and mechanisms. Handb Clin Neurol. 2014;122:101–13.CrossRefPubMed
8.
go back to reference Henderson APD, Barnett MH, Parratt JDE, Prineas JW. Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol. 2009;66(6):739–53.CrossRefPubMed Henderson APD, Barnett MH, Parratt JDE, Prineas JW. Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol. 2009;66(6):739–53.CrossRefPubMed
9.
go back to reference Watanabe T, Yamamoto T, Abe Y, Saito N, Kumagai T, Kayama H. Differential activation of microglia after experimental spinal cord injury. J Neurotrauma. 1999;16(3):255–65.CrossRefPubMed Watanabe T, Yamamoto T, Abe Y, Saito N, Kumagai T, Kayama H. Differential activation of microglia after experimental spinal cord injury. J Neurotrauma. 1999;16(3):255–65.CrossRefPubMed
10.
go back to reference Sato F, Tanaka H, Hasanovic F, Tsunoda I. Theiler’s virus infection: pathophysiology of demyelination and neurodegeneration. Pathophysiology. 2011;18(1):31–41.CrossRefPubMedPubMedCentral Sato F, Tanaka H, Hasanovic F, Tsunoda I. Theiler’s virus infection: pathophysiology of demyelination and neurodegeneration. Pathophysiology. 2011;18(1):31–41.CrossRefPubMedPubMedCentral
13.
go back to reference Paz Soldán MM, Raman MR, Gamez JD, Lohrey AK, Chen Y, Pirko I, et al. Correlation of brain atrophy, disability, and spinal cord atrophy in a murine model of multiple sclerosis. J Neuroimaging. 2015;25(4):595–9.CrossRefPubMedPubMedCentral Paz Soldán MM, Raman MR, Gamez JD, Lohrey AK, Chen Y, Pirko I, et al. Correlation of brain atrophy, disability, and spinal cord atrophy in a murine model of multiple sclerosis. J Neuroimaging. 2015;25(4):595–9.CrossRefPubMedPubMedCentral
14.
go back to reference Konno H, Yamamoto T, Iwasaki Y, Suzuki H, Saito T, Terunuma H. Wallerian degeneration induces Ia-antigen expression in the rat brain. J Neuroimmunol. 1989;25(2–3):151–9.CrossRefPubMed Konno H, Yamamoto T, Iwasaki Y, Suzuki H, Saito T, Terunuma H. Wallerian degeneration induces Ia-antigen expression in the rat brain. J Neuroimmunol. 1989;25(2–3):151–9.CrossRefPubMed
15.
go back to reference Konno H, Yamamoto T, Suzuki H, Yamamoto H, Iwasaki Y, Ohara Y, et al. Targeting of adoptively transferred experimental allergic encephalitis lesion at the sites of wallerian degeneration. Acta Neuropathol. 1990;80(5):521–6.CrossRefPubMed Konno H, Yamamoto T, Suzuki H, Yamamoto H, Iwasaki Y, Ohara Y, et al. Targeting of adoptively transferred experimental allergic encephalitis lesion at the sites of wallerian degeneration. Acta Neuropathol. 1990;80(5):521–6.CrossRefPubMed
16.
go back to reference Tsunoda I, Tanaka T, Saijoh Y, Fujinami RS. Targeting inflammatory demyelinating lesions to sites of Wallerian degeneration. Am J Pathol. 2007;171(5):1563–75.CrossRefPubMedPubMedCentral Tsunoda I, Tanaka T, Saijoh Y, Fujinami RS. Targeting inflammatory demyelinating lesions to sites of Wallerian degeneration. Am J Pathol. 2007;171(5):1563–75.CrossRefPubMedPubMedCentral
17.
go back to reference van Noort JM, van den Elsen PJ, van Horssen J, Geurts JJG, van der Valk P, Amor S. Preactive multiple sclerosis lesions offer novel clues for neuroprotective therapeutic strategies. CNS Neurol Disord Drug Targets. 2011;10(1):68–81.CrossRefPubMed van Noort JM, van den Elsen PJ, van Horssen J, Geurts JJG, van der Valk P, Amor S. Preactive multiple sclerosis lesions offer novel clues for neuroprotective therapeutic strategies. CNS Neurol Disord Drug Targets. 2011;10(1):68–81.CrossRefPubMed
18.
go back to reference van Noort JM, Baker D, Amor S. Mechanisms in the development of multiple sclerosis lesions: reconciling autoimmune and neurodegenerative factors. CNS Neurol Disord Drug Targets. 2012;11(5):556–69.CrossRefPubMed van Noort JM, Baker D, Amor S. Mechanisms in the development of multiple sclerosis lesions: reconciling autoimmune and neurodegenerative factors. CNS Neurol Disord Drug Targets. 2012;11(5):556–69.CrossRefPubMed
19.
go back to reference van der Valk P, Amor S. Preactive lesions in multiple sclerosis. Curr Opin Neurol. 2009;22(3):207–13.PubMed van der Valk P, Amor S. Preactive lesions in multiple sclerosis. Curr Opin Neurol. 2009;22(3):207–13.PubMed
20.
go back to reference Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology. 2014;141(3):302–13.CrossRefPubMedPubMedCentral Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology. 2014;141(3):302–13.CrossRefPubMedPubMedCentral
21.
go back to reference Bsibsi M, Peferoen LAN, Holtman IR, Nacken PJ, Gerritsen WH, Witte ME, et al. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol. 2014;128(2):215–29.CrossRefPubMed Bsibsi M, Peferoen LAN, Holtman IR, Nacken PJ, Gerritsen WH, Witte ME, et al. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol. 2014;128(2):215–29.CrossRefPubMed
22.
go back to reference Bsibsi M, Holtman IR, Gerritsen WH, Eggen BJL, Boddeke E, van der Valk P, et al. Alpha-B-crystallin induces an immune-regulatory and antiviral microglial response in preactive multiple sclerosis lesions. J Neuropathol Exp Neurol. 2013;72(10):970–9.CrossRefPubMed Bsibsi M, Holtman IR, Gerritsen WH, Eggen BJL, Boddeke E, van der Valk P, et al. Alpha-B-crystallin induces an immune-regulatory and antiviral microglial response in preactive multiple sclerosis lesions. J Neuropathol Exp Neurol. 2013;72(10):970–9.CrossRefPubMed
23.
go back to reference De Groot CJA, Bergers E, Kamphorst W, Ravid R, Polman CH, Barkhof F, et al. Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p)reactive lesions. Brain. 2001;124(Pt 8):1635–45.CrossRefPubMed De Groot CJA, Bergers E, Kamphorst W, Ravid R, Polman CH, Barkhof F, et al. Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p)reactive lesions. Brain. 2001;124(Pt 8):1635–45.CrossRefPubMed
24.
go back to reference Prineas JW, Parratt JDE. Oligodendrocytes and the early multiple sclerosis lesion. Ann Neurol. 2012;72(1):18–31.CrossRefPubMed Prineas JW, Parratt JDE. Oligodendrocytes and the early multiple sclerosis lesion. Ann Neurol. 2012;72(1):18–31.CrossRefPubMed
25.
go back to reference Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B. Review: leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol. 2011;37(1):24–39.CrossRefPubMed Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B. Review: leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol. 2011;37(1):24–39.CrossRefPubMed
26.
go back to reference Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.CrossRefPubMed Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.CrossRefPubMed
27.
go back to reference Takeda M, Takahashi M, Matsumoto S. Contribution of the activation of satellite glia in sensory ganglia to pathological pain. Neurosci Biobehav Rev. 2009;33(6):784–92.CrossRefPubMed Takeda M, Takahashi M, Matsumoto S. Contribution of the activation of satellite glia in sensory ganglia to pathological pain. Neurosci Biobehav Rev. 2009;33(6):784–92.CrossRefPubMed
28.
go back to reference Cao H, Zhang Y-Q. Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev. 2008;32(5):972–83.CrossRefPubMed Cao H, Zhang Y-Q. Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev. 2008;32(5):972–83.CrossRefPubMed
Metadata
Title
“Microglial nodules” and “newly forming lesions” may be a Janus face of early MS lesions; implications from virus-induced demyelination, the Inside-Out model
Authors
Fumitaka Sato
Nicholas E. Martinez
Elaine Cliburn Stewart
Seiichi Omura
J. Steven Alexander
Ikuo Tsunoda
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2015
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-015-0478-y

Other articles of this Issue 1/2015

BMC Neurology 1/2015 Go to the issue