Skip to main content
Top
Published in: BMC Neurology 1/2014

Open Access 01-12-2014 | Debate

Inverse correlation between Alzheimer’s disease and cancer: implication for a strong impact of regenerative propensity on neurodegeneration?

Authors: Jian-Ming Li, Chao Liu, Xia Hu, Yan Cai, Chao Ma, Xue-Gang Luo, Xiao-Xin Yan

Published in: BMC Neurology | Issue 1/2014

Login to get access

Abstract

Background

Recent studies have revealed an inverse epidemiological correlation between Alzheimer’s disease (AD) and cancer − patients with AD show a reduced risk of cancer, while cancer survivors are less likely to develop AD. These late discoveries in human subjects call for explorative studies to unlock the underlying biological mechanism, but also may shed new light on conceptual interrogation of the principal pathogenic players in AD etiology.

Discussion

Here we hypothesize that this negative correlation reflects a rebalance of biosynthetic propensity between body systems under the two disease statuses. In normal condition the body cellular systems are maintained homeostatically under a balanced cell degenerative vs. surviving/regenerative propensities, determined by biosynthetic resources for anabolic processing. AD pathogenesis involves neurodegeneration but also aberrant regenerative, or reactive anabolic, burden, while cancer development is driving by uncontrolled proliferation inherent with excessive anabolic activity. The aberrant neural regenerative propensity in AD pathogenesis and the uncontrolled cellular proliferative propensity in cancer pathogeneses can manifest as competitive processes, which could result in the inverse epidemiological correlation seen among the elderly.

Summary

The reduced prevalence of AD in cancer survivors may implicate a strong impact of aberrant neural regenerative burden in neurodegeneration. Further explorative studies into the inverse correlation between AD and cancer should include examinations of the proliferative propensity of tumor cells in AD models, and the development of AD-like neuropathology in cancer models as well as following anti-proliferative drug treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fargo K, Bleiler L: Alzheimer’s association report. Alzheimers Dement. 2014, 10: e47-e92. 10.1016/j.jalz.2014.08.103.CrossRef Fargo K, Bleiler L: Alzheimer’s association report. Alzheimers Dement. 2014, 10: e47-e92. 10.1016/j.jalz.2014.08.103.CrossRef
2.
go back to reference Tong L, Ahn C, Symanski E, Lai D, Du XL: Temporal trends in the leading causes of death among a large national cohort of patients with colorectal cancer from 1975 to 2009 in the United States. Ann Epidemiol. 2014, 24: 411-417. 10.1016/j.annepidem.2014.01.005.CrossRefPubMed Tong L, Ahn C, Symanski E, Lai D, Du XL: Temporal trends in the leading causes of death among a large national cohort of patients with colorectal cancer from 1975 to 2009 in the United States. Ann Epidemiol. 2014, 24: 411-417. 10.1016/j.annepidem.2014.01.005.CrossRefPubMed
3.
go back to reference Roe CM, Behrens MI, Xiong C, Miller JP, Morris JC: Alzheimer disease and cancer. Neurology. 2005, 64: 895-898. 10.1212/01.WNL.0000152889.94785.51.CrossRefPubMed Roe CM, Behrens MI, Xiong C, Miller JP, Morris JC: Alzheimer disease and cancer. Neurology. 2005, 64: 895-898. 10.1212/01.WNL.0000152889.94785.51.CrossRefPubMed
4.
go back to reference Roe CM, Fitzpatrick AL, Xiong C, Sieh W, Kuller L, Miller JP, Williams MM, Kopan R, Behrens MI, Morris JC: Cancer linked to Alzheimer disease but not vascular dementia. Neurology. 2010, 74: 106-112. 10.1212/WNL.0b013e3181c91873.CrossRefPubMedPubMedCentral Roe CM, Fitzpatrick AL, Xiong C, Sieh W, Kuller L, Miller JP, Williams MM, Kopan R, Behrens MI, Morris JC: Cancer linked to Alzheimer disease but not vascular dementia. Neurology. 2010, 74: 106-112. 10.1212/WNL.0b013e3181c91873.CrossRefPubMedPubMedCentral
5.
go back to reference Driver JA, Beiser A, Au R, Kreger BE, Splansky GL, Kurth T, Kiel DP, Lu KP, Seshadri S, Wolf PA: Inverse association between cancer and Alzheimer’s disease: results from the Framingham Heart Study. BMJ. 2012, 344: e1442-10.1136/bmj.e1442.CrossRefPubMedPubMedCentral Driver JA, Beiser A, Au R, Kreger BE, Splansky GL, Kurth T, Kiel DP, Lu KP, Seshadri S, Wolf PA: Inverse association between cancer and Alzheimer’s disease: results from the Framingham Heart Study. BMJ. 2012, 344: e1442-10.1136/bmj.e1442.CrossRefPubMedPubMedCentral
6.
go back to reference Realmuto S, Cinturino A, Arnao V, Mazzola MA, Cupidi C, Aridon P, Ragonese P, Savettieri G, D’Amelio M: Tumor diagnosis preceding Alzheimer’s disease onset: is there a link between cancer and Alzheimer’s disease?. J Alzheimers Dis. 2012, 31: 177-182.PubMed Realmuto S, Cinturino A, Arnao V, Mazzola MA, Cupidi C, Aridon P, Ragonese P, Savettieri G, D’Amelio M: Tumor diagnosis preceding Alzheimer’s disease onset: is there a link between cancer and Alzheimer’s disease?. J Alzheimers Dis. 2012, 31: 177-182.PubMed
7.
go back to reference Du XL, Cai Y, Symanski E: Association between chemotherapy and cognitive impairments in a large cohort of patients with colorectal cancer. Int J Oncol. 2013, 42: 2123-2133.PubMed Du XL, Cai Y, Symanski E: Association between chemotherapy and cognitive impairments in a large cohort of patients with colorectal cancer. Int J Oncol. 2013, 42: 2123-2133.PubMed
8.
go back to reference Musicco M, Adorni F, Di Santo S, Prinelli F, Pettenati C, Caltagirone C, Palmer K, Russo A: Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology. 2013, 81: 322-328. 10.1212/WNL.0b013e31829c5ec1.CrossRefPubMed Musicco M, Adorni F, Di Santo S, Prinelli F, Pettenati C, Caltagirone C, Palmer K, Russo A: Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology. 2013, 81: 322-328. 10.1212/WNL.0b013e31829c5ec1.CrossRefPubMed
9.
go back to reference Ou SM, Lee YJ, Hu YW, Liu CJ, Chen TJ, Fuh JL, Wang SJ: Does Alzheimer’s disease protect against cancers? A nationwide population-based study. Neuroepidemiology. 2013, 40: 42-49. 10.1159/000341411.CrossRefPubMed Ou SM, Lee YJ, Hu YW, Liu CJ, Chen TJ, Fuh JL, Wang SJ: Does Alzheimer’s disease protect against cancers? A nationwide population-based study. Neuroepidemiology. 2013, 40: 42-49. 10.1159/000341411.CrossRefPubMed
10.
go back to reference White RS, Lipton RB, Hall CB, Steinerman JR: Nonmelanoma skin cancer is associated with reduced Alzheimer disease risk. Neurology. 2013, 80: 1966-1972. 10.1212/WNL.0b013e3182941990.CrossRefPubMedPubMedCentral White RS, Lipton RB, Hall CB, Steinerman JR: Nonmelanoma skin cancer is associated with reduced Alzheimer disease risk. Neurology. 2013, 80: 1966-1972. 10.1212/WNL.0b013e3182941990.CrossRefPubMedPubMedCentral
11.
go back to reference Benito-León J1, Romero JP, Louis ED, Bermejo-Pareja F: Faster cognitive decline in elders without dementia and decreased risk of cancer mortality: NEDICES study. Neurology. 2014, 82: 1441-1448. 10.1212/WNL.0000000000000350.CrossRefPubMedPubMedCentral Benito-León J1, Romero JP, Louis ED, Bermejo-Pareja F: Faster cognitive decline in elders without dementia and decreased risk of cancer mortality: NEDICES study. Neurology. 2014, 82: 1441-1448. 10.1212/WNL.0000000000000350.CrossRefPubMedPubMedCentral
12.
go back to reference DeKosky ST, Scheff SW: Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Annals of Neurol. 1990, 27: 457-464. 10.1002/ana.410270502.CrossRef DeKosky ST, Scheff SW: Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Annals of Neurol. 1990, 27: 457-464. 10.1002/ana.410270502.CrossRef
13.
go back to reference Terry RD, Masliah E, Salmon DP, Butters N, Deteresa R, Hill R, Hansen LA, Katzman R: Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Annals Neurol. 1991, 30: 572-580. 10.1002/ana.410300410.CrossRef Terry RD, Masliah E, Salmon DP, Butters N, Deteresa R, Hill R, Hansen LA, Katzman R: Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Annals Neurol. 1991, 30: 572-580. 10.1002/ana.410300410.CrossRef
14.
go back to reference Heinonen O, Soininen H, Sorvari H, Kosunen O, Paljarvi L, Koivisto E, Riekkinen PJ: Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in Alzheimer’s disease. Neuroscience. 1995, 64: 375-384. 10.1016/0306-4522(94)00422-2.CrossRefPubMed Heinonen O, Soininen H, Sorvari H, Kosunen O, Paljarvi L, Koivisto E, Riekkinen PJ: Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in Alzheimer’s disease. Neuroscience. 1995, 64: 375-384. 10.1016/0306-4522(94)00422-2.CrossRefPubMed
15.
go back to reference Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW, Morris JC: Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology. 2001, 56: 127-129. 10.1212/WNL.56.1.127.CrossRefPubMed Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW, Morris JC: Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology. 2001, 56: 127-129. 10.1212/WNL.56.1.127.CrossRefPubMed
16.
go back to reference Reddy PH, Mani G, Park BS, Jacques J, Murdoch G, Whetsell W, Kaye J, Manczak M: Differential loss of synaptic proteins in Alzheimer’s disease: implications for synaptic dysfunction. J Alzheimer’s Dis. 2005, 7: 103-117. Reddy PH, Mani G, Park BS, Jacques J, Murdoch G, Whetsell W, Kaye J, Manczak M: Differential loss of synaptic proteins in Alzheimer’s disease: implications for synaptic dysfunction. J Alzheimer’s Dis. 2005, 7: 103-117.
17.
go back to reference Scheff SW, Price DA, Schmitt FA, Scheff MA, Mufson EJ: Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis. 2011, 24: 547-557. Scheff SW, Price DA, Schmitt FA, Scheff MA, Mufson EJ: Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis. 2011, 24: 547-557.
18.
go back to reference Berchtold NC, Coleman PD, Cribbs DH, Rogers J, Gillen DL, Cotman CW: Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease. Neurobiol Aging. 2013, 34: 1653-1661. 10.1016/j.neurobiolaging.2012.11.024.CrossRefPubMed Berchtold NC, Coleman PD, Cribbs DH, Rogers J, Gillen DL, Cotman CW: Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease. Neurobiol Aging. 2013, 34: 1653-1661. 10.1016/j.neurobiolaging.2012.11.024.CrossRefPubMed
19.
go back to reference Berchtold NC, Sabbagh MN, Beach TG, Kim RC, Cribbs DH, Cotman CW: Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer’s disease. Neurobiol Aging. 2014, 35: 1961-1972. 10.1016/j.neurobiolaging.2014.03.031.CrossRefPubMedPubMedCentral Berchtold NC, Sabbagh MN, Beach TG, Kim RC, Cribbs DH, Cotman CW: Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer’s disease. Neurobiol Aging. 2014, 35: 1961-1972. 10.1016/j.neurobiolaging.2014.03.031.CrossRefPubMedPubMedCentral
20.
go back to reference Behrens MI, Lendon C, Roe CM: A common biological mechanism in cancer and Alzheimer’s disease?. Curr Alzheimer Res. 2009, 6: 196-204. 10.2174/156720509788486608.CrossRefPubMedPubMedCentral Behrens MI, Lendon C, Roe CM: A common biological mechanism in cancer and Alzheimer’s disease?. Curr Alzheimer Res. 2009, 6: 196-204. 10.2174/156720509788486608.CrossRefPubMedPubMedCentral
21.
go back to reference Cenini G, Sultana R, Memo M, Butterfield DA: Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease. J Cell Mol Med. 2008, 12: 987-994. 10.1111/j.1582-4934.2008.00163.x.CrossRefPubMedPubMedCentral Cenini G, Sultana R, Memo M, Butterfield DA: Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease. J Cell Mol Med. 2008, 12: 987-994. 10.1111/j.1582-4934.2008.00163.x.CrossRefPubMedPubMedCentral
22.
go back to reference Hooper C, Meimaridou E, Tavassoli M, Melino G, Lovestone S, Killick R: p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells. Neurosci Lett. 2007, 418: 34-37. 10.1016/j.neulet.2007.03.026.CrossRefPubMedPubMedCentral Hooper C, Meimaridou E, Tavassoli M, Melino G, Lovestone S, Killick R: p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells. Neurosci Lett. 2007, 418: 34-37. 10.1016/j.neulet.2007.03.026.CrossRefPubMedPubMedCentral
23.
go back to reference Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Markesbery WR, Zhou XZ, Lu KP, Butterfield DA: Oxidative modification and down-regulation of Pin1 in Alzheimer’s disease hippocampus: a redox proteomics analysis. Neurobiol Aging. 2006, 27: 918-925. 10.1016/j.neurobiolaging.2005.05.005.CrossRefPubMed Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Markesbery WR, Zhou XZ, Lu KP, Butterfield DA: Oxidative modification and down-regulation of Pin1 in Alzheimer’s disease hippocampus: a redox proteomics analysis. Neurobiol Aging. 2006, 27: 918-925. 10.1016/j.neurobiolaging.2005.05.005.CrossRefPubMed
24.
go back to reference Wang S, Simon BP, Bennett DA, Schneider JA, Malter JS, Wang DS: The significance of Pin1 in the development of Alzheimer’s disease. J Alzheimers Dis. 2007, 11: 13-23.PubMed Wang S, Simon BP, Bennett DA, Schneider JA, Malter JS, Wang DS: The significance of Pin1 in the development of Alzheimer’s disease. J Alzheimers Dis. 2007, 11: 13-23.PubMed
25.
go back to reference Geddes JW, Cotman CW: Plasticity in Alzheimer’s disease: too much or not enough?. Neurobiol Aging. 1991, 12: 330-333. 10.1016/0197-4580(91)90011-8. discussion 352-335CrossRefPubMed Geddes JW, Cotman CW: Plasticity in Alzheimer’s disease: too much or not enough?. Neurobiol Aging. 1991, 12: 330-333. 10.1016/0197-4580(91)90011-8. discussion 352-335CrossRefPubMed
26.
go back to reference Arendt T: Alzheimer’s disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience. 2001, 102: 723-765. 10.1016/S0306-4522(00)00516-9.CrossRefPubMed Arendt T: Alzheimer’s disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience. 2001, 102: 723-765. 10.1016/S0306-4522(00)00516-9.CrossRefPubMed
27.
go back to reference Castellani RJ, Lee HG, Zhu X, Perry G, Smith MA: Alzheimer disease pathology as a host response. J Neuropathol Exp Neurol. 2008, 67: 523-531. 10.1097/NEN.0b013e318177eaf4.CrossRefPubMedPubMedCentral Castellani RJ, Lee HG, Zhu X, Perry G, Smith MA: Alzheimer disease pathology as a host response. J Neuropathol Exp Neurol. 2008, 67: 523-531. 10.1097/NEN.0b013e318177eaf4.CrossRefPubMedPubMedCentral
28.
go back to reference Williams C, Mehrian Shai R, Wu Y, Hsu YH, Sitzer T, Spann B, McCleary C, Mo Y, Miller CA: Transcriptome analysis of synaptoneurosomes identifies neuroplasticity genes overexpressed in incipient Alzheimer’s disease. PLoS One. 2009, 4: e4936-10.1371/journal.pone.0004936.CrossRefPubMedPubMedCentral Williams C, Mehrian Shai R, Wu Y, Hsu YH, Sitzer T, Spann B, McCleary C, Mo Y, Miller CA: Transcriptome analysis of synaptoneurosomes identifies neuroplasticity genes overexpressed in incipient Alzheimer’s disease. PLoS One. 2009, 4: e4936-10.1371/journal.pone.0004936.CrossRefPubMedPubMedCentral
29.
go back to reference Holohan KN, Lahiri DK, Schneider BP, Foroud T, Saykin AJ: Functional microRNAs in Alzheimer’s disease and cancer: differential regulation of common mechanisms and pathways. Front Genet. 2013, 3: 323-10.3389/fgene.2012.00323.CrossRefPubMedPubMedCentral Holohan KN, Lahiri DK, Schneider BP, Foroud T, Saykin AJ: Functional microRNAs in Alzheimer’s disease and cancer: differential regulation of common mechanisms and pathways. Front Genet. 2013, 3: 323-10.3389/fgene.2012.00323.CrossRefPubMedPubMedCentral
30.
go back to reference Ferrer I, Marín C, Rey MJ, Ribalta T, Goutan E, Blanco R, Tolosa E, Martí E: BDNF and full-length and truncated TrkB expression in Alzheimer disease. implications in therapeutic strategies. J Neuropathol Exp Neurol. 1999, 58: 729-739. 10.1097/00005072-199907000-00007.CrossRefPubMed Ferrer I, Marín C, Rey MJ, Ribalta T, Goutan E, Blanco R, Tolosa E, Martí E: BDNF and full-length and truncated TrkB expression in Alzheimer disease. implications in therapeutic strategies. J Neuropathol Exp Neurol. 1999, 58: 729-739. 10.1097/00005072-199907000-00007.CrossRefPubMed
31.
go back to reference Zeng F, Lu JJ, Zhou XF, Wang YJ: Roles of p75NTR in the pathogenesis of Alzheimer’s disease: a novel therapeutic target. Biochem Pharmacol. 2011, 82: 1500-1509. 10.1016/j.bcp.2011.06.040.CrossRefPubMed Zeng F, Lu JJ, Zhou XF, Wang YJ: Roles of p75NTR in the pathogenesis of Alzheimer’s disease: a novel therapeutic target. Biochem Pharmacol. 2011, 82: 1500-1509. 10.1016/j.bcp.2011.06.040.CrossRefPubMed
32.
go back to reference Zeng F, Zou HQ, Zhou HD, Li J, Wang L, Cao HY, Yi X, Wang X, Liang CR, Wang YR, Zhang AQ, Tan XL, Peng KR, Zhang LL, Gao CY, Xu ZQ, Wen AQ, Lian Y, Zhou XF, Wang YJ: The relationship between single nucleotide polymorphisms of the NTRK2 gene and sporadic Alzheimer’s disease in the Chinese Han population. Neurosci Lett. 2013, 550: 55-59. 10.1016/j.neulet.2013.06.061.CrossRefPubMed Zeng F, Zou HQ, Zhou HD, Li J, Wang L, Cao HY, Yi X, Wang X, Liang CR, Wang YR, Zhang AQ, Tan XL, Peng KR, Zhang LL, Gao CY, Xu ZQ, Wen AQ, Lian Y, Zhou XF, Wang YJ: The relationship between single nucleotide polymorphisms of the NTRK2 gene and sporadic Alzheimer’s disease in the Chinese Han population. Neurosci Lett. 2013, 550: 55-59. 10.1016/j.neulet.2013.06.061.CrossRefPubMed
33.
go back to reference Farfara D, Lifshitz V, Frenkel D: Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer’s disease. J Cell Mol Med. 2008, 12: 762-780. 10.1111/j.1582-4934.2008.00314.x.CrossRefPubMedPubMedCentral Farfara D, Lifshitz V, Frenkel D: Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer’s disease. J Cell Mol Med. 2008, 12: 762-780. 10.1111/j.1582-4934.2008.00314.x.CrossRefPubMedPubMedCentral
35.
go back to reference Avila-Muñoz E, Arias C: When astrocytes become harmful: functional and inflammatory responses that contribute to Alzheimer’s disease. Ageing Res Rev. 2014, 18C: 29-40. 10.1016/j.arr.2014.07.004.CrossRef Avila-Muñoz E, Arias C: When astrocytes become harmful: functional and inflammatory responses that contribute to Alzheimer’s disease. Ageing Res Rev. 2014, 18C: 29-40. 10.1016/j.arr.2014.07.004.CrossRef
36.
go back to reference Deng X, Li M, Ai W, He L, Lu D, Patrylo P, Cai H, Luo X, Li Z, Yan XX: Lipolysaccharide-induced neuroinflammation is associated with Alzheimer-like amyloidogenic axonal pathology and dendritic degeneration in rats. Adv Alzheimers Dis. 2014, 3: 78-93. 10.4236/aad.2014.32009.CrossRef Deng X, Li M, Ai W, He L, Lu D, Patrylo P, Cai H, Luo X, Li Z, Yan XX: Lipolysaccharide-induced neuroinflammation is associated with Alzheimer-like amyloidogenic axonal pathology and dendritic degeneration in rats. Adv Alzheimers Dis. 2014, 3: 78-93. 10.4236/aad.2014.32009.CrossRef
37.
go back to reference Braak H, Braak E: Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl. 1996, 165: 3-12. 10.1111/j.1600-0404.1996.tb05866.x.CrossRefPubMed Braak H, Braak E: Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl. 1996, 165: 3-12. 10.1111/j.1600-0404.1996.tb05866.x.CrossRefPubMed
38.
go back to reference Soldano A, Hassan BA: Beyond pathology: APP, brain development and Alzheimer’s disease. Curr Opin Neurobiol. 2014, 27C: 61-67. 10.1016/j.conb.2014.02.003.CrossRef Soldano A, Hassan BA: Beyond pathology: APP, brain development and Alzheimer’s disease. Curr Opin Neurobiol. 2014, 27C: 61-67. 10.1016/j.conb.2014.02.003.CrossRef
39.
go back to reference Shoji M, Hirai S, Yamaguchi H, Harigaya Y, Kawarabayashi T: Amyloid beta-protein precursor accumulates in dystrophic neurites of senile plaques in Alzheimer-type dementia. Brain Res. 1990, 512: 164-168. 10.1016/0006-8993(90)91187-L.CrossRefPubMed Shoji M, Hirai S, Yamaguchi H, Harigaya Y, Kawarabayashi T: Amyloid beta-protein precursor accumulates in dystrophic neurites of senile plaques in Alzheimer-type dementia. Brain Res. 1990, 512: 164-168. 10.1016/0006-8993(90)91187-L.CrossRefPubMed
40.
go back to reference Cummings BJ, Su JH, Geddes JW, Van Nostrand WE, Wagner SL, Cunningham DD, Cotman CW: Aggregation of the amyloid precursor protein within degenerating neurons and dystrophic neurites in Alzheimer’s disease. Neuroscience. 1992, 48: 763-777. 10.1016/0306-4522(92)90265-4.CrossRefPubMed Cummings BJ, Su JH, Geddes JW, Van Nostrand WE, Wagner SL, Cunningham DD, Cotman CW: Aggregation of the amyloid precursor protein within degenerating neurons and dystrophic neurites in Alzheimer’s disease. Neuroscience. 1992, 48: 763-777. 10.1016/0306-4522(92)90265-4.CrossRefPubMed
41.
go back to reference Cras P, Kawai M, Lowery D, Gonzalez-De Whitt P, Greenberg B, Perry G: Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc Natl Acad Sci U S A. 1991, 88: 7552-7556. 10.1073/pnas.88.17.7552.CrossRefPubMedPubMedCentral Cras P, Kawai M, Lowery D, Gonzalez-De Whitt P, Greenberg B, Perry G: Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc Natl Acad Sci U S A. 1991, 88: 7552-7556. 10.1073/pnas.88.17.7552.CrossRefPubMedPubMedCentral
42.
go back to reference McGeer PL, Akiyama H, Kawamata T, Yamada T, Walker DG, Ishii T: Immunohistochemical localization of beta-amyloid precursor protein sequences in Alzheimer and normal brain tissue by light and electron microscopy. J Neurosci Res. 1992, 31: 428-442. 10.1002/jnr.490310305.CrossRefPubMed McGeer PL, Akiyama H, Kawamata T, Yamada T, Walker DG, Ishii T: Immunohistochemical localization of beta-amyloid precursor protein sequences in Alzheimer and normal brain tissue by light and electron microscopy. J Neurosci Res. 1992, 31: 428-442. 10.1002/jnr.490310305.CrossRefPubMed
43.
go back to reference Zhang XM, Cai Y, Xiong K, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Yan XX: Beta-secretase-1 elevation in transgenic mouse models of Alzheimer’s disease is associated with synaptic/axonal pathology and amyloidogenesis: implications for neuritic plaque development. Eur J Neurosci. 2009, 30: 2271-2283. 10.1111/j.1460-9568.2009.07017.x.CrossRefPubMedPubMedCentral Zhang XM, Cai Y, Xiong K, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Yan XX: Beta-secretase-1 elevation in transgenic mouse models of Alzheimer’s disease is associated with synaptic/axonal pathology and amyloidogenesis: implications for neuritic plaque development. Eur J Neurosci. 2009, 30: 2271-2283. 10.1111/j.1460-9568.2009.07017.x.CrossRefPubMedPubMedCentral
44.
go back to reference Cai Y, Xiong K, Zhang XM, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Chu Y, Kordower JH, Yan XX: ?-Secretase-1 elevation in aged monkey and Alzheimer’s disease human cerebral cortex occurs around the vasculature in partnership with multisystem axon terminal pathogenesis and ?-amyloid accumulation. Eur J Neurosci. 2010, 32: 1223-1238. 10.1111/j.1460-9568.2010.07376.x.CrossRefPubMedPubMedCentral Cai Y, Xiong K, Zhang XM, Cai H, Luo XG, Feng JC, Clough RW, Struble RG, Patrylo PR, Chu Y, Kordower JH, Yan XX: ?-Secretase-1 elevation in aged monkey and Alzheimer’s disease human cerebral cortex occurs around the vasculature in partnership with multisystem axon terminal pathogenesis and ?-amyloid accumulation. Eur J Neurosci. 2010, 32: 1223-1238. 10.1111/j.1460-9568.2010.07376.x.CrossRefPubMedPubMedCentral
45.
go back to reference Chui DH, Shirotani K, Tanahashi H, Akiyama H, Ozawa K, Kunishita T, Takahashi K, Makifuchi T, Tabira T: Both N-terminal and C-terminal fragments of presenilin 1 colocalize with neurofibrillary tangles in neurons and dystrophic neurites of senile plaques in Alzheimer’s disease. J Neurosci Res. 1998, 53: 99-106. 10.1002/(SICI)1097-4547(19980701)53:1<99::AID-JNR10>3.0.CO;2-Y.CrossRefPubMed Chui DH, Shirotani K, Tanahashi H, Akiyama H, Ozawa K, Kunishita T, Takahashi K, Makifuchi T, Tabira T: Both N-terminal and C-terminal fragments of presenilin 1 colocalize with neurofibrillary tangles in neurons and dystrophic neurites of senile plaques in Alzheimer’s disease. J Neurosci Res. 1998, 53: 99-106. 10.1002/(SICI)1097-4547(19980701)53:1<99::AID-JNR10>3.0.CO;2-Y.CrossRefPubMed
46.
go back to reference Hendriks L, De Jonghe C, Lübke U, Woodrow S, Vanderhoeven I, Boons J, Cras P, Martin JJ, Van Broeckhoven C: Immunoreactivity of presenilin-1 and tau in Alzheimer’s disease brain. Exp Neurol. 1998, 149: 341-348. 10.1006/exnr.1997.6739.CrossRefPubMed Hendriks L, De Jonghe C, Lübke U, Woodrow S, Vanderhoeven I, Boons J, Cras P, Martin JJ, Van Broeckhoven C: Immunoreactivity of presenilin-1 and tau in Alzheimer’s disease brain. Exp Neurol. 1998, 149: 341-348. 10.1006/exnr.1997.6739.CrossRefPubMed
47.
go back to reference Yang X, Handler M, Shen J: Role of presenilin-1 in murine neural development. Ann N Y Acad Sci. 2000, 920: 165-170. 10.1111/j.1749-6632.2000.tb06918.x.CrossRefPubMed Yang X, Handler M, Shen J: Role of presenilin-1 in murine neural development. Ann N Y Acad Sci. 2000, 920: 165-170. 10.1111/j.1749-6632.2000.tb06918.x.CrossRefPubMed
48.
go back to reference Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyin M, Sopher B, Miller MW, Ware CB, Martin GM, Kim SH, Langdon RB, Sisodia SS, Tsien JZ: Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron. 2001, 32: 911-926. 10.1016/S0896-6273(01)00523-2.CrossRefPubMed Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyin M, Sopher B, Miller MW, Ware CB, Martin GM, Kim SH, Langdon RB, Sisodia SS, Tsien JZ: Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron. 2001, 32: 911-926. 10.1016/S0896-6273(01)00523-2.CrossRefPubMed
49.
go back to reference Yan XX, Li T, Rominger CM, Prakash SR, Wong PC, Olson RE, Zaczek R, Li YW: Binding sites of gamma-secretase inhibitors in rodent brain: distribution, postnatal development, and effect of deafferentation. J Neurosci. 2004, 24: 2942-2952. 10.1523/JNEUROSCI.0092-04.2004.CrossRefPubMed Yan XX, Li T, Rominger CM, Prakash SR, Wong PC, Olson RE, Zaczek R, Li YW: Binding sites of gamma-secretase inhibitors in rodent brain: distribution, postnatal development, and effect of deafferentation. J Neurosci. 2004, 24: 2942-2952. 10.1523/JNEUROSCI.0092-04.2004.CrossRefPubMed
50.
go back to reference Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang HC, Xu G, Koliatsos VE, Borchelt DR, Price DL, Lee HK, Wong PC: BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci. 2005, 25: 11693-11709. 10.1523/JNEUROSCI.2766-05.2005.CrossRefPubMedPubMedCentral Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang HC, Xu G, Koliatsos VE, Borchelt DR, Price DL, Lee HK, Wong PC: BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci. 2005, 25: 11693-11709. 10.1523/JNEUROSCI.2766-05.2005.CrossRefPubMedPubMedCentral
51.
go back to reference Gadadhar A, Marr R, Lazarov O: Presenilin-1 regulates neural progenitor cell differentiation in the adult brain. J Neurosci. 2011, 31: 2615-2623. 10.1523/JNEUROSCI.4767-10.2011.CrossRefPubMedPubMedCentral Gadadhar A, Marr R, Lazarov O: Presenilin-1 regulates neural progenitor cell differentiation in the adult brain. J Neurosci. 2011, 31: 2615-2623. 10.1523/JNEUROSCI.4767-10.2011.CrossRefPubMedPubMedCentral
52.
go back to reference Rajapaksha TW, Eimer WA, Bozza TC, Vassar R: The Alzheimer’s ?-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb. Mol Neurodegener. 2011, 6: 88-10.1186/1750-1326-6-88.CrossRefPubMedPubMedCentral Rajapaksha TW, Eimer WA, Bozza TC, Vassar R: The Alzheimer’s ?-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb. Mol Neurodegener. 2011, 6: 88-10.1186/1750-1326-6-88.CrossRefPubMedPubMedCentral
53.
go back to reference Cao L, Rickenbacher GT, Rodriguez S, Moulia TW, Albers MW: The precision of axon targeting of mouse olfactory sensory neurons requires the BACE1 protease. Sci Rep. 2012, 2: 231-PubMedPubMedCentral Cao L, Rickenbacher GT, Rodriguez S, Moulia TW, Albers MW: The precision of axon targeting of mouse olfactory sensory neurons requires the BACE1 protease. Sci Rep. 2012, 2: 231-PubMedPubMedCentral
54.
go back to reference Yan XX, Ma C, Gai WP, Cai H, Luo XG: Can BACE1 inhibition mitigate early axonal pathology in neurological diseases?. J Alzheimers Dis. 2014, 38: 705-718.PubMedPubMedCentral Yan XX, Ma C, Gai WP, Cai H, Luo XG: Can BACE1 inhibition mitigate early axonal pathology in neurological diseases?. J Alzheimers Dis. 2014, 38: 705-718.PubMedPubMedCentral
55.
go back to reference Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW: Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett. 1993, 160: 139-144. 10.1016/0304-3940(93)90398-5.CrossRefPubMed Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW: Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett. 1993, 160: 139-144. 10.1016/0304-3940(93)90398-5.CrossRefPubMed
56.
go back to reference Moussavi Nik SH, Wilson L, Newman M, Croft K, Mori TA, Musgrave I, Lardelli M: The BACE1-PSEN-A?PP regulatory axis has an ancient role in response to low oxygen/oxidative stress. J Alzheimers Dis. 2012, 28: 515-530.PubMed Moussavi Nik SH, Wilson L, Newman M, Croft K, Mori TA, Musgrave I, Lardelli M: The BACE1-PSEN-A?PP regulatory axis has an ancient role in response to low oxygen/oxidative stress. J Alzheimers Dis. 2012, 28: 515-530.PubMed
57.
go back to reference Li JM, Xue ZQ, Deng SH, Luo XG, Patrylo PR, Rose GW, Cai H, Cai Y, Yan XX: Amyloid plaque pathogenesis in 5XFAD mouse spinal cord: retrograde transneuronal modulation after peripheral nerve injury. Neurotox Res. 2013, 24: 1-14. 10.1007/s12640-012-9355-2.CrossRefPubMed Li JM, Xue ZQ, Deng SH, Luo XG, Patrylo PR, Rose GW, Cai H, Cai Y, Yan XX: Amyloid plaque pathogenesis in 5XFAD mouse spinal cord: retrograde transneuronal modulation after peripheral nerve injury. Neurotox Res. 2013, 24: 1-14. 10.1007/s12640-012-9355-2.CrossRefPubMed
58.
go back to reference Arendt T, Bullmann T: Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a “master switch” regulating synaptic gain in neuronal networks. Am J Physiol Regul Integr Comp Physiol. 2013, 305: R478-R489. 10.1152/ajpregu.00117.2013.CrossRefPubMed Arendt T, Bullmann T: Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a “master switch” regulating synaptic gain in neuronal networks. Am J Physiol Regul Integr Comp Physiol. 2013, 305: R478-R489. 10.1152/ajpregu.00117.2013.CrossRefPubMed
59.
go back to reference Miyasaka T, Sato S, Tatebayashi Y, Takashima A: Microtubule destruction induces tau liberation and its subsequent phosphorylation. FEBS Lett. 2010, 584: 3227-3232. 10.1016/j.febslet.2010.06.014.CrossRefPubMed Miyasaka T, Sato S, Tatebayashi Y, Takashima A: Microtubule destruction induces tau liberation and its subsequent phosphorylation. FEBS Lett. 2010, 584: 3227-3232. 10.1016/j.febslet.2010.06.014.CrossRefPubMed
60.
go back to reference Kuchibhotla KV, Wegmann S, Kopeikina KJ, Hawkes J, Rudinskiy N, Andermann ML, Spires-Jones TL, Bacskai BJ, Hyman BT: Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proc Natl Acad Sci U S A. 2014, 111: 510-514. 10.1073/pnas.1318807111.CrossRefPubMed Kuchibhotla KV, Wegmann S, Kopeikina KJ, Hawkes J, Rudinskiy N, Andermann ML, Spires-Jones TL, Bacskai BJ, Hyman BT: Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proc Natl Acad Sci U S A. 2014, 111: 510-514. 10.1073/pnas.1318807111.CrossRefPubMed
61.
go back to reference Stoothoff WH, Johnson GV: Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta. 2005, 1739: 280-297. 10.1016/j.bbadis.2004.06.017.CrossRefPubMed Stoothoff WH, Johnson GV: Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta. 2005, 1739: 280-297. 10.1016/j.bbadis.2004.06.017.CrossRefPubMed
62.
go back to reference Raina AK1, Zhu X, Monteiro M, Takeda A, Smith MA: Abortive oncogeny and cell cycle-mediated events in Alzheimer disease. Prog Cell Cycle Res. 2000, 4: 235-242. 10.1007/978-1-4615-4253-7_20.CrossRefPubMed Raina AK1, Zhu X, Monteiro M, Takeda A, Smith MA: Abortive oncogeny and cell cycle-mediated events in Alzheimer disease. Prog Cell Cycle Res. 2000, 4: 235-242. 10.1007/978-1-4615-4253-7_20.CrossRefPubMed
63.
go back to reference Arendt T: Cell cycle activation and aneuploid neurons in Alzheimer’s disease. Mol Neurobiol. 2012, 46: 125-135. 10.1007/s12035-012-8262-0.CrossRefPubMed Arendt T: Cell cycle activation and aneuploid neurons in Alzheimer’s disease. Mol Neurobiol. 2012, 46: 125-135. 10.1007/s12035-012-8262-0.CrossRefPubMed
64.
go back to reference Falandry C, Bonnefoy M, Freyer G, Gilson E: Biology of cancer and aging: a complex association with cellular senescence.J Clin Oncol 2014., Falandry C, Bonnefoy M, Freyer G, Gilson E: Biology of cancer and aging: a complex association with cellular senescence.J Clin Oncol 2014.,
65.
go back to reference Suzuki H, Asakawa A, Amitani H, Nakamura N, Inui A: Cancer cachexia-pathophysiology and management. J Gastroenterol. 2013, 48: 574-594. 10.1007/s00535-013-0787-0.CrossRefPubMedPubMedCentral Suzuki H, Asakawa A, Amitani H, Nakamura N, Inui A: Cancer cachexia-pathophysiology and management. J Gastroenterol. 2013, 48: 574-594. 10.1007/s00535-013-0787-0.CrossRefPubMedPubMedCentral
66.
go back to reference Demetrius LA, Simon DK: An inverse-Warburg effect and the origin of Alzheimer’s disease. Biogerontology. 2012, 13: 583-594. 10.1007/s10522-012-9403-6.CrossRefPubMed Demetrius LA, Simon DK: An inverse-Warburg effect and the origin of Alzheimer’s disease. Biogerontology. 2012, 13: 583-594. 10.1007/s10522-012-9403-6.CrossRefPubMed
67.
go back to reference Driver JA: Inverse association between cancer and neurodegenerative disease: review of the epidemiologic and biological evidence. Biogerontology. 2014 Driver JA: Inverse association between cancer and neurodegenerative disease: review of the epidemiologic and biological evidence. Biogerontology. 2014
68.
go back to reference Tabares-Seisdedos R, Rubenstein JL: Inverse cancer comorbidity: a serendipitous opportunity to gain insight into CNS disorders. Nat Rev Neurosci. 2013, 14: 293-304. 10.1038/nrn3464.CrossRefPubMed Tabares-Seisdedos R, Rubenstein JL: Inverse cancer comorbidity: a serendipitous opportunity to gain insight into CNS disorders. Nat Rev Neurosci. 2013, 14: 293-304. 10.1038/nrn3464.CrossRefPubMed
69.
go back to reference Palsson-McDermott EM, O’Neill LA: The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays. 2013, 35: 965-973. 10.1002/bies.201300084.CrossRefPubMed Palsson-McDermott EM, O’Neill LA: The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays. 2013, 35: 965-973. 10.1002/bies.201300084.CrossRefPubMed
70.
go back to reference Costantini LC, Barr LJ, Vogel JL, Henderson ST: Hypometabolism as a therapeutic target in Alzheimer’s disease. BMC Neurosci. 2008, 9 (Suppl 2): S16-10.1186/1471-2202-9-S2-S16.CrossRefPubMedPubMedCentral Costantini LC, Barr LJ, Vogel JL, Henderson ST: Hypometabolism as a therapeutic target in Alzheimer’s disease. BMC Neurosci. 2008, 9 (Suppl 2): S16-10.1186/1471-2202-9-S2-S16.CrossRefPubMedPubMedCentral
71.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009, 324: 1029-1033. 10.1126/science.1160809.CrossRefPubMedPubMedCentral Vander Heiden MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009, 324: 1029-1033. 10.1126/science.1160809.CrossRefPubMedPubMedCentral
72.
go back to reference Agathocleous M, Harris WA: Metabolism in physiological cell proliferation and differentiation. Trends Cell Biol. 2013, 23: 484-492. 10.1016/j.tcb.2013.05.004.CrossRefPubMed Agathocleous M, Harris WA: Metabolism in physiological cell proliferation and differentiation. Trends Cell Biol. 2013, 23: 484-492. 10.1016/j.tcb.2013.05.004.CrossRefPubMed
73.
go back to reference Hayes CD, Dey D, Palavicini JP, Wang H, Patkar KA, Minond D, Nefzi A, Lakshmana MK: Striking reduction of amyloid plaque burden in an Alzheimer’s mouse model after chronic administration of carmustine. BMC Med. 2013, 11: 81-10.1186/1741-7015-11-81.CrossRefPubMedPubMedCentral Hayes CD, Dey D, Palavicini JP, Wang H, Patkar KA, Minond D, Nefzi A, Lakshmana MK: Striking reduction of amyloid plaque burden in an Alzheimer’s mouse model after chronic administration of carmustine. BMC Med. 2013, 11: 81-10.1186/1741-7015-11-81.CrossRefPubMedPubMedCentral
74.
go back to reference Brunden KR, Trojanowski JQ, Smith AB 3rd, Lee VM, Ballatore C: Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorg Med Chem. 2014, 22: 5040-5049. 10.1016/j.bmc.2013.12.046.CrossRefPubMed Brunden KR, Trojanowski JQ, Smith AB 3rd, Lee VM, Ballatore C: Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorg Med Chem. 2014, 22: 5040-5049. 10.1016/j.bmc.2013.12.046.CrossRefPubMed
Metadata
Title
Inverse correlation between Alzheimer’s disease and cancer: implication for a strong impact of regenerative propensity on neurodegeneration?
Authors
Jian-Ming Li
Chao Liu
Xia Hu
Yan Cai
Chao Ma
Xue-Gang Luo
Xiao-Xin Yan
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2014
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-014-0211-2

Other articles of this Issue 1/2014

BMC Neurology 1/2014 Go to the issue