Skip to main content
Top
Published in: BMC Medical Genetics 1/2019

Open Access 01-12-2019 | Colorectal Cancer | Research article

Screening and computational analysis of colorectal associated non-synonymous polymorphism in CTNNB1 gene in Pakistani population

Authors: Suhail Razak, Nousheen Bibi, Javid Ahmad Dar, Tayyaba Afsar, Ali Almajwal, Zahida Parveen, Sarwat Jahan

Published in: BMC Medical Genetics | Issue 1/2019

Login to get access

Abstract

Background

Colorectal cancer (CRC) is categorized by alteration of vital pathways such as β-catenin (CTNNB1) mutations, WNT signaling activation, tumor protein 53 (TP53) inactivation, BRAF, Adenomatous polyposis coli (APC) inactivation, KRAS, dysregulation of epithelial to mesenchymal transition (EMT) genes, MYC amplification, etc. In the present study an attempt was made to screen CTNNB1 gene in colorectal cancer samples from Pakistani population and investigated the association of CTNNB1 gene mutations in the development of colorectal cancer.

Methods

200 colorectal tumors approximately of male and female patients with sporadic or familial colorectal tumors and normal tissues were included. DNA was extracted and amplified through polymerase chain reaction (PCR) and subjected to exome sequence analysis. Immunohistochemistry was done to study protein expression. Molecular dynamic (MD) simulations of CTNNB1WT and mutant S33F and T41A were performed to evaluate the stability, folding, conformational changes and dynamic behaviors of CTNNB1 protein.

Results

Sequence analysis revealed two activating mutations (S33F and T41A) in exon 3 of CTNNB1 gene involving the transition of C.T and A.G at amino acid position 33 and 41 respectively (p.C33T and p.A41G). Immuno-histochemical staining showed the accumulation of β-catenin protein both in cytoplasm as well as in the nuclei of cancer cells when compared with normal tissue. Further molecular modeling, docking and simulation approaches revealed significant conformational changes in the N-terminus region of normal to mutant CTNNB1 gene critical for binding with Glycogen synthase kinase 3-B (GSK3) and transducin containing protein1 (TrCp1).

Conclusion

Present study on Pakistani population revealed an association of two non-synonymous polymorphisms in the CTNNB1 gene with colorectal cancer. These genetic variants led to the accumulation of the CTNNB1, a hallmark of tumor development. Also, analysis of structure to function alterations in CTNNB1 gene is crucial in understanding downstream biological events.
Literature
1.
go back to reference Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Prev Biomark. 2010;19(8):1893–907.CrossRef Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Prev Biomark. 2010;19(8):1893–907.CrossRef
2.
go back to reference Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.CrossRefPubMed Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.CrossRefPubMed
3.
go back to reference Arnold M, Karim-Kos HE, Coebergh JW, Byrnes G, Antilla A, Ferlay J, Renehan AG, Forman D, Soerjomataram I. Recent trends in incidence of five common cancers in 26 European countries since 1988: analysis of the European Cancer observatory. Eur J Cancer. 2015;51(9):1164–87.CrossRefPubMed Arnold M, Karim-Kos HE, Coebergh JW, Byrnes G, Antilla A, Ferlay J, Renehan AG, Forman D, Soerjomataram I. Recent trends in incidence of five common cancers in 26 European countries since 1988: analysis of the European Cancer observatory. Eur J Cancer. 2015;51(9):1164–87.CrossRefPubMed
4.
go back to reference Holleczek B, Rossi S, Domenic A, Innos K, Minicozzi P, Francisci S, Hackl M, Eisemann N, Brenner H, Group E-W. On-going improvement and persistent differences in the survival for patients with colon and rectum cancer across Europe 1999–2007–results from the EUROCARE-5 study. Eur J Cancer. 2015;51(15):2158–68.CrossRefPubMed Holleczek B, Rossi S, Domenic A, Innos K, Minicozzi P, Francisci S, Hackl M, Eisemann N, Brenner H, Group E-W. On-going improvement and persistent differences in the survival for patients with colon and rectum cancer across Europe 1999–2007–results from the EUROCARE-5 study. Eur J Cancer. 2015;51(15):2158–68.CrossRefPubMed
5.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefPubMed Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefPubMed
6.
go back to reference Amini AQ, Samo KA, Memon AS. Colorectal cancer in younger population: our experience. J Pak Med Assoc. 2013;63(10):1275–7.PubMed Amini AQ, Samo KA, Memon AS. Colorectal cancer in younger population: our experience. J Pak Med Assoc. 2013;63(10):1275–7.PubMed
7.
go back to reference Qayyum A, Nagi AH, Murtaza BN, Shakoori AR. Prevalence of Colorectal Adenocarcinoma in Northern Regions of Pakistan: a Cross Sectional Study. Pak J Zool. 2016;48(6):1. Qayyum A, Nagi AH, Murtaza BN, Shakoori AR. Prevalence of Colorectal Adenocarcinoma in Northern Regions of Pakistan: a Cross Sectional Study. Pak J Zool. 2016;48(6):1.
8.
go back to reference Jackson-Thompson J, Ahmed F, German RR, Lai SM, Friedman C. Descriptive epidemiology of colorectal cancer in the United States, 1998–2001. Cancer. 2006;107(S5):1103–11.CrossRefPubMed Jackson-Thompson J, Ahmed F, German RR, Lai SM, Friedman C. Descriptive epidemiology of colorectal cancer in the United States, 1998–2001. Cancer. 2006;107(S5):1103–11.CrossRefPubMed
9.
go back to reference Rim SH, Seeff L, Ahmed F, King JB, Coughlin SS. Colorectal cancer incidence in the United States, 1999-2004. Cancer. 2009;115(9):1967–76.CrossRefPubMed Rim SH, Seeff L, Ahmed F, King JB, Coughlin SS. Colorectal cancer incidence in the United States, 1999-2004. Cancer. 2009;115(9):1967–76.CrossRefPubMed
10.
go back to reference Ibrahim EM, Zeeneldin AA, El-Khodary TR, Al-Gahmi AM, Sadiq BMB. Past, present and future of colorectal cancer in the Kingdom of Saudi Arabia. Saudi J Gastroenterol. 2008;14(4):178.CrossRefPubMedPubMedCentral Ibrahim EM, Zeeneldin AA, El-Khodary TR, Al-Gahmi AM, Sadiq BMB. Past, present and future of colorectal cancer in the Kingdom of Saudi Arabia. Saudi J Gastroenterol. 2008;14(4):178.CrossRefPubMedPubMedCentral
11.
go back to reference Chung TP, Fleshman JW. The genetics of sporadic colon cancer. In Seminars in Colon and Rectal Surgery. WB Saunders. 2004;15(3):128–135. Chung TP, Fleshman JW. The genetics of sporadic colon cancer. In Seminars in Colon and Rectal Surgery. WB Saunders. 2004;15(3):128–135.
12.
13.
14.
go back to reference Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13(12):767–79.CrossRefPubMed Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13(12):767–79.CrossRefPubMed
16.
go back to reference Miller JR, Hocking AM, Brown JD, Moon RT. Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene. 1999;18(55):7860–72.CrossRefPubMed Miller JR, Hocking AM, Brown JD, Moon RT. Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene. 1999;18(55):7860–72.CrossRefPubMed
17.
go back to reference Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Res. 1998;58(6):1130–4.PubMed Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Res. 1998;58(6):1130–4.PubMed
18.
19.
20.
21.
go back to reference Yamamoto H, Hinoi T, Michiue T, Fukui A, Usui H, Janssens V, Kikuchi A. Inhibition of the Wnt signaling pathway by the PR61 subunit of protein phosphatase 2A. J Biol Chem. 2001;276(29):26875–26882. Yamamoto H, Hinoi T, Michiue T, Fukui A, Usui H, Janssens V, Kikuchi A. Inhibition of the Wnt signaling pathway by the PR61 subunit of protein phosphatase 2A. J Biol Chem. 2001;276(29):26875–26882.
22.
go back to reference Heisenberg C-P, Houart C, Take-uchi M, Rauch G-J, Young N, Coutinho P, Masai I, Caneparo L, Concha ML, Geisler R. A mutation in the Gsk3–binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev. 2001;15(11):1427–34.CrossRefPubMedPubMedCentral Heisenberg C-P, Houart C, Take-uchi M, Rauch G-J, Young N, Coutinho P, Masai I, Caneparo L, Concha ML, Geisler R. A mutation in the Gsk3–binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev. 2001;15(11):1427–34.CrossRefPubMedPubMedCentral
23.
go back to reference Brembeck FH, Rosário M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of β-catenin. Curr Opin Genet Dev. 2006;16(1):51–9.CrossRefPubMed Brembeck FH, Rosário M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of β-catenin. Curr Opin Genet Dev. 2006;16(1):51–9.CrossRefPubMed
24.
go back to reference Chun P, Wainberg ZA. Adjuvant chemotherapy for stage II colon cancer: the role of molecular markers in choosing therapy. Gastrointest Cancer Res. 2009;3(5):191.PubMedPubMedCentral Chun P, Wainberg ZA. Adjuvant chemotherapy for stage II colon cancer: the role of molecular markers in choosing therapy. Gastrointest Cancer Res. 2009;3(5):191.PubMedPubMedCentral
25.
go back to reference Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov. 2006;5(12):997–1014.CrossRefPubMed Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov. 2006;5(12):997–1014.CrossRefPubMed
26.
go back to reference Korinek V, Barker N, Morin PJ, Van Wichen D, De Weger R, Kinzler KW, Vogelstein B, Clevers H. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science. 1997;275(5307):1784–7.CrossRefPubMed Korinek V, Barker N, Morin PJ, Van Wichen D, De Weger R, Kinzler KW, Vogelstein B, Clevers H. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science. 1997;275(5307):1784–7.CrossRefPubMed
27.
go back to reference Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science. 1997;275(5307):1787–90.CrossRefPubMed Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science. 1997;275(5307):1787–90.CrossRefPubMed
28.
30.
go back to reference Soong R, Iacopetta BJ, Harvey JM, Sterrett GF, Dawkins HJ, Hahnel R, Robbins PD. Detection of p53 gene mutation by rapid PCR-SSCP and its association with poor survival in breast cancer. Int J Cancer. 1997;74(6):642–7.CrossRefPubMed Soong R, Iacopetta BJ, Harvey JM, Sterrett GF, Dawkins HJ, Hahnel R, Robbins PD. Detection of p53 gene mutation by rapid PCR-SSCP and its association with poor survival in breast cancer. Int J Cancer. 1997;74(6):642–7.CrossRefPubMed
31.
go back to reference Woodgett JR. Judging a protein by more than its name: GSK-3. Sci STKE. 2001;100(2001):1–12. Woodgett JR. Judging a protein by more than its name: GSK-3. Sci STKE. 2001;100(2001):1–12.
33.
go back to reference Schulman BA, Carrano AC, Jeffrey PD, Bowen Z. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature. 2000;408(6810):381.CrossRefPubMed Schulman BA, Carrano AC, Jeffrey PD, Bowen Z. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature. 2000;408(6810):381.CrossRefPubMed
34.
go back to reference Wall MA, Coleman DE, Lee E, Iñiguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR. The structure of the G protein heterotrimer Giα1β1γ2. Cell. 1995;83(6):1047–58.CrossRefPubMed Wall MA, Coleman DE, Lee E, Iñiguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR. The structure of the G protein heterotrimer Giα1β1γ2. Cell. 1995;83(6):1047–58.CrossRefPubMed
35.
go back to reference Brivanlou AH, Darnell JE. Signal transduction and the control of gene expression. Science. 2002;295(5556):813–8.CrossRefPubMed Brivanlou AH, Darnell JE. Signal transduction and the control of gene expression. Science. 2002;295(5556):813–8.CrossRefPubMed
36.
go back to reference Najdi R, Holcombe RF, Waterman ML. Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog. 2011;10:1.CrossRef Najdi R, Holcombe RF, Waterman ML. Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog. 2011;10:1.CrossRef
37.
go back to reference Xu W, Kimelman D. Mechanistic insights from structural studies of β-catenin and its binding partners. J Cell Sci. 2007;120(19):3337–44.CrossRefPubMed Xu W, Kimelman D. Mechanistic insights from structural studies of β-catenin and its binding partners. J Cell Sci. 2007;120(19):3337–44.CrossRefPubMed
38.
go back to reference Coates JC. Armadillo repeat proteins: beyond the animal kingdom. Trends Cell Biol. 2003;13(9):463–71.CrossRefPubMed Coates JC. Armadillo repeat proteins: beyond the animal kingdom. Trends Cell Biol. 2003;13(9):463–71.CrossRefPubMed
39.
go back to reference Fiol C, Mahrenholz A, Wang Y, Roeske R, Roach P. Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. J Biol Chem. 1987;262(29):14042–8.PubMed Fiol C, Mahrenholz A, Wang Y, Roeske R, Roach P. Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein kinase II and glycogen synthase kinase 3. J Biol Chem. 1987;262(29):14042–8.PubMed
40.
go back to reference Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 1998;17(5):1371–84.CrossRefPubMedPubMedCentral Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 1998;17(5):1371–84.CrossRefPubMedPubMedCentral
41.
go back to reference Zhang Y, Han Y, Zheng R, Yu J-H, Miao Y, Wang L, Wang E-H. Expression of Frat1 correlates with expression of β-catenin and is associated with a poor clinical outcome in human SCC and AC. Tumor Biol. 2012;33(5):1437–44.CrossRef Zhang Y, Han Y, Zheng R, Yu J-H, Miao Y, Wang L, Wang E-H. Expression of Frat1 correlates with expression of β-catenin and is associated with a poor clinical outcome in human SCC and AC. Tumor Biol. 2012;33(5):1437–44.CrossRef
42.
go back to reference Kimelman D, Xu W. [beta]-catenin destruction complex: insights and questions from a structural perspective. Oncogene. 2006;25(57):7482.CrossRefPubMed Kimelman D, Xu W. [beta]-catenin destruction complex: insights and questions from a structural perspective. Oncogene. 2006;25(57):7482.CrossRefPubMed
43.
go back to reference Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, Schirle M, Shi X, Hild M, Bauer A. RNF146 is a poly (ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol. 2011;13(5):623.CrossRefPubMed Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, Schirle M, Shi X, Hild M, Bauer A. RNF146 is a poly (ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol. 2011;13(5):623.CrossRefPubMed
46.
go back to reference Xue B, Dunker AK, Uversky VN. The roles of intrinsic disorder in orchestrating the Wnt-pathway. J Biomol Struct Dyn. 2012;29(5):843–61.CrossRefPubMed Xue B, Dunker AK, Uversky VN. The roles of intrinsic disorder in orchestrating the Wnt-pathway. J Biomol Struct Dyn. 2012;29(5):843–61.CrossRefPubMed
47.
go back to reference Humphries A, Cereser B, Gay LJ, Miller DS, Das B, Gutteridge A, Elia G, Nye E, Jeffery R, Poulsom R. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution. Proc Natl Acad Sci. 2013;110(27):E2490–9.CrossRefPubMedPubMedCentral Humphries A, Cereser B, Gay LJ, Miller DS, Das B, Gutteridge A, Elia G, Nye E, Jeffery R, Poulsom R. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution. Proc Natl Acad Sci. 2013;110(27):E2490–9.CrossRefPubMedPubMedCentral
48.
go back to reference van Veelen W, Le NH, Helvensteijn W, Blonden L, Theeuwes M, Bakker ER, Franken PF, van Gurp L, Meijlink F, van der Valk MA. β-catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis. Gut. 2011;60(9):1204 gut 2010.233460.CrossRefPubMed van Veelen W, Le NH, Helvensteijn W, Blonden L, Theeuwes M, Bakker ER, Franken PF, van Gurp L, Meijlink F, van der Valk MA. β-catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis. Gut. 2011;60(9):1204 gut 2010.233460.CrossRefPubMed
49.
go back to reference Kanczuga-Koda L, Wincewicz A, Fudala A, Abrycki T, Famulski W, Baltaziak M, Sulkowski S, Koda M. E-cadherin and β-catenin adhesion proteins correlate positively with connexins in colorectal cancer. Oncol Lett. 2014;7(6):1863–70.CrossRefPubMedPubMedCentral Kanczuga-Koda L, Wincewicz A, Fudala A, Abrycki T, Famulski W, Baltaziak M, Sulkowski S, Koda M. E-cadherin and β-catenin adhesion proteins correlate positively with connexins in colorectal cancer. Oncol Lett. 2014;7(6):1863–70.CrossRefPubMedPubMedCentral
50.
go back to reference White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology. 2012;142(2):219–32.CrossRefPubMed White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology. 2012;142(2):219–32.CrossRefPubMed
51.
go back to reference Hao XP, Pretlow TG, Rao JS, Pretlow TP. β-Catenin expression is altered in human colonic aberrant crypt foci. Cancer Res. 2001;61(22):8085–8.PubMed Hao XP, Pretlow TG, Rao JS, Pretlow TP. β-Catenin expression is altered in human colonic aberrant crypt foci. Cancer Res. 2001;61(22):8085–8.PubMed
52.
go back to reference Alomar SY, Mansour L, Abuderman A, Alkhuriji A, Arafah M, Alwasel S, Harrath AH, Almutairi M, Trayhyrn P, Dar JA. β-Catenin accumulation and S33F mutation of CTNNB1 gene in colorectal cancer in Saudi Arabia. Pol J Pathol. 2016;67(2):156–62.CrossRefPubMed Alomar SY, Mansour L, Abuderman A, Alkhuriji A, Arafah M, Alwasel S, Harrath AH, Almutairi M, Trayhyrn P, Dar JA. β-Catenin accumulation and S33F mutation of CTNNB1 gene in colorectal cancer in Saudi Arabia. Pol J Pathol. 2016;67(2):156–62.CrossRefPubMed
53.
go back to reference Iwamoto M, Ahnen DJ, Franklin WA, Maltzman TH. Expression of β-catenin and full-length APC protein in normal and neoplastic colonic tissues. Carcinogenesis. 2000;21(11):1935–40.CrossRefPubMed Iwamoto M, Ahnen DJ, Franklin WA, Maltzman TH. Expression of β-catenin and full-length APC protein in normal and neoplastic colonic tissues. Carcinogenesis. 2000;21(11):1935–40.CrossRefPubMed
54.
go back to reference ter Haar E, Coll JT, Austen DA, Hsiao H-M, Swenson L, Jain J. Structure of GSK3 [beta] reveals a primed phosphorylation mechanism. Nat Struct Mol Biol. 2001;8(7):593.CrossRef ter Haar E, Coll JT, Austen DA, Hsiao H-M, Swenson L, Jain J. Structure of GSK3 [beta] reveals a primed phosphorylation mechanism. Nat Struct Mol Biol. 2001;8(7):593.CrossRef
55.
go back to reference Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW. The SCFβ-TRCP–ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 1999;13(3):270–83.CrossRefPubMedPubMedCentral Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW. The SCFβ-TRCP–ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 1999;13(3):270–83.CrossRefPubMedPubMedCentral
56.
go back to reference Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Ki N, Nakayama K. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J. 1999;18(9):2401–10.CrossRefPubMedPubMedCentral Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Ki N, Nakayama K. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J. 1999;18(9):2401–10.CrossRefPubMedPubMedCentral
57.
go back to reference Hart M, Concordet J, Lassot I, Albert I, Del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr Biol. 1999;9(4):207–11.CrossRefPubMed Hart M, Concordet J, Lassot I, Albert I, Del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr Biol. 1999;9(4):207–11.CrossRefPubMed
58.
go back to reference Latres E, Chiaur D, Pagano M. The human F box protein -Trcp associates with the Cul1/Skp1 complex and regulates the stability of -catenin. Oncogene. 1999;18(4):849–54.CrossRefPubMed Latres E, Chiaur D, Pagano M. The human F box protein -Trcp associates with the Cul1/Skp1 complex and regulates the stability of -catenin. Oncogene. 1999;18(4):849–54.CrossRefPubMed
59.
go back to reference Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X. β-Trcp couples β-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci. 1999;96(11):6273–8.CrossRefPubMedPubMedCentral Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X. β-Trcp couples β-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci. 1999;96(11):6273–8.CrossRefPubMedPubMedCentral
60.
go back to reference Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science. 1997;275(5307):1790–2.CrossRefPubMed Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science. 1997;275(5307):1790–2.CrossRefPubMed
61.
go back to reference Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14(15):1837–51.PubMed Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14(15):1837–51.PubMed
Metadata
Title
Screening and computational analysis of colorectal associated non-synonymous polymorphism in CTNNB1 gene in Pakistani population
Authors
Suhail Razak
Nousheen Bibi
Javid Ahmad Dar
Tayyaba Afsar
Ali Almajwal
Zahida Parveen
Sarwat Jahan
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2019
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-019-0911-y

Other articles of this Issue 1/2019

BMC Medical Genetics 1/2019 Go to the issue