Skip to main content
Top
Published in: BMC Medical Genetics 1/2019

Open Access 01-12-2019 | Splenectomy | Case report

Two different pathogenic gene mutations coexisted in the same hereditary spherocytosis family manifested with heterogeneous phenotypes

Authors: Hongwei Shen, Hui Huang, Kaizhong Luo, Yan Yi, Xiaoliu Shi

Published in: BMC Medical Genetics | Issue 1/2019

Login to get access

Abstract

Background

Hereditary spherocytosis (HS) is a common type of hereditary hemolytic anemia. According to the current diagnostic criteria of HS, patients with a family history of HS, typical clinical features and laboratory investigations could be diagnosed without the requirement of any additional tests, including genetic analysis. However, the clinical heterogeneities incur difficulties in HS diagnosis. We therefore aimed to investigate the application of genetic diagnosis in a family-based cohort.

Case presentation

In the present Chinese family, two probands sharing similar clinical manifestations, including jaundice, cholelithiasis, splenomegaly and spherocytes, while the clinical features of other family members were inconclusive. Whole-exome sequencing (WES) unexpectedly unveiled two separate disease-causing mutations in the two probands. SPTB R1625X mutation detected in proband D was a de novo mutation; while proband W inherited the SLC4A1 c.G1469A mutation from her mother, which was also inherited by her brother. However, the clinical features of proband W and her mother and brother were discrepant: proband W suffered from significant splenomegaly, jaundice and cholelithiasis, which resulted in cholecystectomy and splenectomy; while her mother and brother’s HS were not complicated by cholelithiasis, and their splenomegaly and elevated serum bilirubin were moderate. In addition, additional genomic defects involved with HS-related symptoms have not been detected in this family.

Conclusions

Both genotypes and phenotypes could be heterogeneous in the same HS family. The analysis of pathogenic gene mutations may endeavor to play an indispensable role in the accurate diagnosis and genetic consultation of HS individuals and their family members.
Literature
1.
2.
go back to reference Bolton-Maggs PH, Langer JC, Iolascon A, Tittensor P, King MJ, General Haematology Task Force of the British Committee for Standards in Haematology. Guidelines for the diagnosis and management of hereditary spherocytosis--2011 update. Br J Haematol. 2012;156:37–49.CrossRef Bolton-Maggs PH, Langer JC, Iolascon A, Tittensor P, King MJ, General Haematology Task Force of the British Committee for Standards in Haematology. Guidelines for the diagnosis and management of hereditary spherocytosis--2011 update. Br J Haematol. 2012;156:37–49.CrossRef
3.
go back to reference Yi Y, Dang X, Li Y, Zhao C, Tang H, Shi X. Genetic diagnosis and pathogenic analysis of an atypical hereditary spherocytosis combined with UGT1A1 partial deficiency: A case report. Mol Med Rep. 2018;17:382–7.PubMed Yi Y, Dang X, Li Y, Zhao C, Tang H, Shi X. Genetic diagnosis and pathogenic analysis of an atypical hereditary spherocytosis combined with UGT1A1 partial deficiency: A case report. Mol Med Rep. 2018;17:382–7.PubMed
4.
go back to reference Ma S, Deng X, Liao L, Deng Z, Qiu Y, Wei H, et al. Analysis of the causes of the misdiagnosis of hereditary spherocytosis. Oncol Rep. 2018;40:1451–8.PubMed Ma S, Deng X, Liao L, Deng Z, Qiu Y, Wei H, et al. Analysis of the causes of the misdiagnosis of hereditary spherocytosis. Oncol Rep. 2018;40:1451–8.PubMed
6.
go back to reference He Y, Jia S, Dewan RK, Liao N. Novel mutations in patients with hereditary red blood cell membrane disorders using next-generation sequencing. Gene. 2017;627:556–62.CrossRefPubMed He Y, Jia S, Dewan RK, Liao N. Novel mutations in patients with hereditary red blood cell membrane disorders using next-generation sequencing. Gene. 2017;627:556–62.CrossRefPubMed
7.
go back to reference Lin PC, Chiou SS, Lin CY, Wang SC, Huang HY, Chang YS, et al. Whole-exome sequencing for the genetic diagnosis of congenital red blood cell membrane disorders in Taiwan. Clin Chim Acta. 2018;487:311–7.CrossRefPubMed Lin PC, Chiou SS, Lin CY, Wang SC, Huang HY, Chang YS, et al. Whole-exome sequencing for the genetic diagnosis of congenital red blood cell membrane disorders in Taiwan. Clin Chim Acta. 2018;487:311–7.CrossRefPubMed
8.
go back to reference Fan LL, Liu JS, Huang H, Du R, Xiang R. Whole exome sequencing identified a novel mutation (p.Ala1884Pro) of β-spectrin in a Chinese family with hereditary spherocytosis. J Gene Med. 2019;21:e3073.CrossRefPubMed Fan LL, Liu JS, Huang H, Du R, Xiang R. Whole exome sequencing identified a novel mutation (p.Ala1884Pro) of β-spectrin in a Chinese family with hereditary spherocytosis. J Gene Med. 2019;21:e3073.CrossRefPubMed
9.
go back to reference Sriswasdi S, Harper SL, Tang HY, Gallagher PG, Speicher DW. Probing large conformational rearrangements in wild-type and mutant spectrin using structural mass spectrometry. Proc Natl Acad Sci U S A. 2014;111:1801–6.CrossRefPubMedPubMedCentral Sriswasdi S, Harper SL, Tang HY, Gallagher PG, Speicher DW. Probing large conformational rearrangements in wild-type and mutant spectrin using structural mass spectrometry. Proc Natl Acad Sci U S A. 2014;111:1801–6.CrossRefPubMedPubMedCentral
10.
go back to reference Park J, Jeong DC, Yoo J, Jang W, Chae H, Kim J, et al. Mutational characteristics of ANK1 and SPTB genes in hereditary spherocytosis. Clin Genet. 2016;90:69–78.CrossRef Park J, Jeong DC, Yoo J, Jang W, Chae H, Kim J, et al. Mutational characteristics of ANK1 and SPTB genes in hereditary spherocytosis. Clin Genet. 2016;90:69–78.CrossRef
11.
go back to reference Hassoun H, Vassiliadis JN, Murray J, Yi SJ, Hanspal M, et al. Molecular basis of spectrin deficiency in beta spectrin Durham. A deletion within beta spectrin adjacent to the ankyrin-binding site precludes spectrin attachment to the membrane in hereditary spherocytosis. J Clin Invest. 1995;96:2623–9.CrossRefPubMedPubMedCentral Hassoun H, Vassiliadis JN, Murray J, Yi SJ, Hanspal M, et al. Molecular basis of spectrin deficiency in beta spectrin Durham. A deletion within beta spectrin adjacent to the ankyrin-binding site precludes spectrin attachment to the membrane in hereditary spherocytosis. J Clin Invest. 1995;96:2623–9.CrossRefPubMedPubMedCentral
12.
go back to reference Agarwal AM, Nussenzveig RH, Reading NS, Patel JL, Sangle N, Salama ME, et al. Clinical utility of next-generation sequencing in the diagnosis of hereditary haemolytic anaemias. Br J Haematol. 2016;174:806–14.CrossRef Agarwal AM, Nussenzveig RH, Reading NS, Patel JL, Sangle N, Salama ME, et al. Clinical utility of next-generation sequencing in the diagnosis of hereditary haemolytic anaemias. Br J Haematol. 2016;174:806–14.CrossRef
13.
go back to reference Muramatsu H, Okuno Y, Yoshida K, Shiraishi Y, Doisaki S, Narita A, et al. Clinical utility of next-generation sequencing for inherited bone marrow failure syndromes. Genet Med. 2017;19:796–802.CrossRefPubMed Muramatsu H, Okuno Y, Yoshida K, Shiraishi Y, Doisaki S, Narita A, et al. Clinical utility of next-generation sequencing for inherited bone marrow failure syndromes. Genet Med. 2017;19:796–802.CrossRefPubMed
14.
go back to reference Richards S, Aziz N, Bale S, Kulkarni S, Lindeman NI, Roy S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23.CrossRefPubMedPubMedCentral Richards S, Aziz N, Bale S, Kulkarni S, Lindeman NI, Roy S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23.CrossRefPubMedPubMedCentral
15.
go back to reference Reithmeier RA, Casey JR, Kalli AC, Sansom MS, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta. 2016;1858:1507–32.CrossRefPubMed Reithmeier RA, Casey JR, Kalli AC, Sansom MS, Alguel Y, Iwata S. Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta. 2016;1858:1507–32.CrossRefPubMed
16.
go back to reference Dhermy D, Galand C, Bournier O, Boulanger L, Cynober T, Schismanoff PO, et al. Heterogenous band 3 deficiency in hereditary spherocytosis related to different band 3 gene defects. Br J Haematol. 1997;98:32–40.CrossRefPubMed Dhermy D, Galand C, Bournier O, Boulanger L, Cynober T, Schismanoff PO, et al. Heterogenous band 3 deficiency in hereditary spherocytosis related to different band 3 gene defects. Br J Haematol. 1997;98:32–40.CrossRefPubMed
17.
go back to reference Lima PR, Sales TS, Costa FF, Saad ST. Arginine 490 is a hot spot for mutation in the band 3 gene in hereditary spherocytosis. Eur J Haematol. 1999;63:360–1.CrossRefPubMed Lima PR, Sales TS, Costa FF, Saad ST. Arginine 490 is a hot spot for mutation in the band 3 gene in hereditary spherocytosis. Eur J Haematol. 1999;63:360–1.CrossRefPubMed
18.
go back to reference Russo R, Andolfo I, Manna F, Gambale A, Marra R, Rosato BE, et al. Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias. Am J Hematol. 2018;93:672–82.CrossRefPubMed Russo R, Andolfo I, Manna F, Gambale A, Marra R, Rosato BE, et al. Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias. Am J Hematol. 2018;93:672–82.CrossRefPubMed
19.
go back to reference He BJ, Liao L, Deng ZF, Tao YF, Xu YC, Lin FQ. Molecular Genetic Mechanisms of Hereditary Spherocytosis: Current Perspectives. Acta Haematol. 2018;139:60–6.CrossRefPubMed He BJ, Liao L, Deng ZF, Tao YF, Xu YC, Lin FQ. Molecular Genetic Mechanisms of Hereditary Spherocytosis: Current Perspectives. Acta Haematol. 2018;139:60–6.CrossRefPubMed
Metadata
Title
Two different pathogenic gene mutations coexisted in the same hereditary spherocytosis family manifested with heterogeneous phenotypes
Authors
Hongwei Shen
Hui Huang
Kaizhong Luo
Yan Yi
Xiaoliu Shi
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2019
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-019-0826-7

Other articles of this Issue 1/2019

BMC Medical Genetics 1/2019 Go to the issue