Skip to main content
Top
Published in: BMC Medical Genetics 1/2019

Open Access 01-12-2019 | Polymerase Chain Reaction | Research article

Progressive optic nerve changes in cavitary optic disc anomaly: integration of copy number alteration and cis-expression quantitative trait loci to assess disease etiology

Authors: Eileen S. Hwang, Denise J. Morgan, Katie L. Pennington, Leah A. Owen, John H. Fingert, Paul S. Bernstein, Margaret M. DeAngelis

Published in: BMC Medical Genetics | Issue 1/2019

Login to get access

Abstract

Background

We performed clinical and genetic characterization of a family with cavitary optic disc anomaly (CODA), an autosomal dominant condition that causes vision loss due to adult-onset maculopathy in the majority of cases. CODA is characterized by a variably excavated optic nerve appearance such as morning glory, optic pit, atypical coloboma, and severe optic nerve cupping.

Methods

Four affected and fourteen unaffected family members of a multi-generation pedigree were phenotyped by visual acuity, intraocular pressure, dilated fundus examination, fundus photography, and optical coherence tomography. Genetic analysis was performed by breakpoint polymerase chain reaction (PCR), long range PCR, and direct Sanger sequencing. The functional relevance of the copy number alteration region was assessed by in silico analysis.

Results

We found progressive optic nerve cupping in three affected members of a family with CODA. In one individual, an optic pit developed over time from a normal optic nerve. By two independent methods, we detected a previously described intergenic triplication that segregated with disease in all adults of the family. The copy number alteration was also detected in five children with normal optic nerves. eQTL analysis demonstrated that this CNA region regulates expression of up to 4 genes in cis.

Conclusions

Morning glory, optic pit and atypical coloboma are currently considered congenital anomalies of the optic nerve, but our data indicate that in CODA, the excavated optic nerve appearance may develop after birth and into adulthood. In silico analysis of the CNA, may explain why vairable expressivity is observed in CODA.
Appendix
Available only for authorised users
Literature
1.
go back to reference Slusher MM, Weaver RG, Greven CM, Mundorf TK, Cashwell LF. The spectrum of cavitary optic disc anomalies in a family. Ophthalmology. 1989;96:342–7.CrossRef Slusher MM, Weaver RG, Greven CM, Mundorf TK, Cashwell LF. The spectrum of cavitary optic disc anomalies in a family. Ophthalmology. 1989;96:342–7.CrossRef
2.
go back to reference Singerman LJ, Mittra RA. Hereditary optic pit and iris coloboma in three generations of a single family. Retina. 2001;21:273–5.CrossRef Singerman LJ, Mittra RA. Hereditary optic pit and iris coloboma in three generations of a single family. Retina. 2001;21:273–5.CrossRef
3.
go back to reference Savell J, Cook JR. Optic nerve colobomas of autosomal-dominant heredity. Arch Ophthalmol. 1976;94:395–400.CrossRef Savell J, Cook JR. Optic nerve colobomas of autosomal-dominant heredity. Arch Ophthalmol. 1976;94:395–400.CrossRef
4.
go back to reference Brown GC, Shields JA, Goldberg RE. Congenital pits of the optic nerve head II. Clinical studies of humans. Ophthalmology. 1980;87:51–65.CrossRef Brown GC, Shields JA, Goldberg RE. Congenital pits of the optic nerve head II. Clinical studies of humans. Ophthalmology. 1980;87:51–65.CrossRef
5.
go back to reference Avci R, Yilmaz S, Inan UU, Kaderli B, Kurt M, Yalcinbayir O, et al. Long-term outcomes of pars plana vitrectomy without internal limiting membrane peeling for optic disc pit maculopathy. Eye. 2013;27:1359–67.CrossRef Avci R, Yilmaz S, Inan UU, Kaderli B, Kurt M, Yalcinbayir O, et al. Long-term outcomes of pars plana vitrectomy without internal limiting membrane peeling for optic disc pit maculopathy. Eye. 2013;27:1359–67.CrossRef
6.
go back to reference Shukla D, Kalliath J, Tandon M, Vijayakumar B. Vitrectomy for optic disk pit with macular Schisis and outer retinal dehiscence. Retina. 2012;32:1337–42.CrossRef Shukla D, Kalliath J, Tandon M, Vijayakumar B. Vitrectomy for optic disk pit with macular Schisis and outer retinal dehiscence. Retina. 2012;32:1337–42.CrossRef
7.
go back to reference Hazlewood RJ, Roos BR, Solivan-Timpe F, Honkanen RA, Jampol LM, Gieser SC, et al. Heterozygous triplication of upstream regulatory sequences leads to dysregulation of matrix metalloproteinase 19 in patients with cavitary optic disc anomaly. Hum Mutat. 2015;36:369–78.CrossRef Hazlewood RJ, Roos BR, Solivan-Timpe F, Honkanen RA, Jampol LM, Gieser SC, et al. Heterozygous triplication of upstream regulatory sequences leads to dysregulation of matrix metalloproteinase 19 in patients with cavitary optic disc anomaly. Hum Mutat. 2015;36:369–78.CrossRef
11.
go back to reference Casper J, Zweig AS, Villarreal C, Tyner C, Speir ML, Rosenbloom KR, et al. The UCSC genome browser database: 2018 update. Nucleic Acids Res. 2018;46:D762–9.PubMed Casper J, Zweig AS, Villarreal C, Tyner C, Speir ML, Rosenbloom KR, et al. The UCSC genome browser database: 2018 update. Nucleic Acids Res. 2018;46:D762–9.PubMed
12.
go back to reference Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46:D754–61.CrossRef Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46:D754–61.CrossRef
16.
go back to reference GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.CrossRef GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.CrossRef
17.
go back to reference Moore M, Salles D, Jampol LM. Progressive optic nerve cupping and neural rim decrease in a patient with bilateral autosomal dominant optic nerve colobomas. Am J Ophthalmol. 2000;129:517–20.CrossRef Moore M, Salles D, Jampol LM. Progressive optic nerve cupping and neural rim decrease in a patient with bilateral autosomal dominant optic nerve colobomas. Am J Ophthalmol. 2000;129:517–20.CrossRef
18.
go back to reference Perkins SL, Han DP, Gonder JR, Colev G, Beaumont PE. Dynamic atypical optic nerve Coloboma associated with transient macular detachment. Trans Am Ophthalmol Soc. 2005;103:116–25.PubMedPubMedCentral Perkins SL, Han DP, Gonder JR, Colev G, Beaumont PE. Dynamic atypical optic nerve Coloboma associated with transient macular detachment. Trans Am Ophthalmol Soc. 2005;103:116–25.PubMedPubMedCentral
19.
go back to reference Zumbro DS, Jampol LM, Folk JC, Olivier MMG, Anderson-Nelson S. Macular Schisis and detachment associated with presumed acquired enlarged optic nerve head cups. Am J Ophthalmol. 2007;144:70–5.CrossRef Zumbro DS, Jampol LM, Folk JC, Olivier MMG, Anderson-Nelson S. Macular Schisis and detachment associated with presumed acquired enlarged optic nerve head cups. Am J Ophthalmol. 2007;144:70–5.CrossRef
20.
go back to reference Honkanen RA, Jampol LM, Fingert JH, Moore MD, Taylor CM, Stone EM, et al. Familial Cavitary optic disk anomalies: clinical features of a large family with examples of progressive optic nerve head cupping. Am J Ophthalmol. 2007;143:788–94.CrossRef Honkanen RA, Jampol LM, Fingert JH, Moore MD, Taylor CM, Stone EM, et al. Familial Cavitary optic disk anomalies: clinical features of a large family with examples of progressive optic nerve head cupping. Am J Ophthalmol. 2007;143:788–94.CrossRef
21.
go back to reference Van Schil K, Naessens S, Van De Sompele S, Carron M, Aslanidis A, Van Cauwenbergh C, et al. Mapping the genomic landscape of inherited retinal disease genes prioritizes genes prone to coding and noncoding copy-number variations. Genet Med. 2018;20:202–13.CrossRef Van Schil K, Naessens S, Van De Sompele S, Carron M, Aslanidis A, Van Cauwenbergh C, et al. Mapping the genomic landscape of inherited retinal disease genes prioritizes genes prone to coding and noncoding copy-number variations. Genet Med. 2018;20:202–13.CrossRef
22.
go back to reference Chirco KR, Hazlewood RJ, Miller K, Workalemahu G, Jampol LM, Lesser R, et al. MMP19 expression in the human optic nerve. Mol Vis. 2016;22:1429–36.PubMedPubMedCentral Chirco KR, Hazlewood RJ, Miller K, Workalemahu G, Jampol LM, Lesser R, et al. MMP19 expression in the human optic nerve. Mol Vis. 2016;22:1429–36.PubMedPubMedCentral
23.
go back to reference Kim J, Wu H-H, Lander AD, Lyons KM, Matzuk MM, Calof AL, et al. GDF11 controls the timing of progenitor cell competence in developing retina. Science (80- ). 2005;308:1927–30.CrossRef Kim J, Wu H-H, Lander AD, Lyons KM, Matzuk MM, Calof AL, et al. GDF11 controls the timing of progenitor cell competence in developing retina. Science (80- ). 2005;308:1927–30.CrossRef
24.
go back to reference Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future. Philos Trans R Soc B Biol Sci. 2013;368:20120362.CrossRef Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future. Philos Trans R Soc B Biol Sci. 2013;368:20120362.CrossRef
25.
go back to reference Huopaniemi L, Fellman J, Rantala A, Eriksson A, Forsius H, De La Chapelle A, Alitalo T. Skewed secondary sex ratio in the offspring of carriers of the 214G > a mutation of the RS1 gene. Ann Hum Genet. 1999;63:521–33.CrossRef Huopaniemi L, Fellman J, Rantala A, Eriksson A, Forsius H, De La Chapelle A, Alitalo T. Skewed secondary sex ratio in the offspring of carriers of the 214G > a mutation of the RS1 gene. Ann Hum Genet. 1999;63:521–33.CrossRef
Metadata
Title
Progressive optic nerve changes in cavitary optic disc anomaly: integration of copy number alteration and cis-expression quantitative trait loci to assess disease etiology
Authors
Eileen S. Hwang
Denise J. Morgan
Katie L. Pennington
Leah A. Owen
John H. Fingert
Paul S. Bernstein
Margaret M. DeAngelis
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2019
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-019-0800-4

Other articles of this Issue 1/2019

BMC Medical Genetics 1/2019 Go to the issue