Skip to main content
Top
Published in: BMC Medical Genetics 1/2019

Open Access 01-12-2019 | Clonazepam | Case report

Clinical features and genetic analysis of two siblings with startle disease in an Italian family: a case report

Authors: Teresa Sprovieri, Carmine Ungaro, Serena Sivo, Michela Quintiliani, Ilaria Contaldo, Chiara Veredice, Luigi Citrigno, Maria Muglia, Francesca Cavalcanti, Sebastiano Cavallaro, Eugenio Mercuri, Domenica Battaglia

Published in: BMC Medical Genetics | Issue 1/2019

Login to get access

Abstract

Background

Hyperekplexia also known as Startle disease is a rare neuromotor hereditary disorder characterized by exaggerated startle responses to unexpected auditory, tactile, and visual stimuli and generalized muscle stiffness, which both gradually subside during the first months of life. Although the diagnosis of Hyperekplexia is based on clinical findings, pathogenic variants in five genes have been reported to cause Hyperekplexia, of which GLRA1 accounts for about 80% of cases. Dominant and recessive mutations have been identified in GLRA1 gene as pathogenic variants in many individuals with the familial form of Hyperekplexia and occasionally in simplex cases.

Case presentation

In the present study, we describe clinical and genetic features of two Italian siblings, one with the major and one with the minor form of the disease. DNA samples from the probands and their parents were performed by NGS approach and validated by Sanger sequencing. The analysis of the GLRA1 gene revealed, in both probands, compound heterozygous mutations: c.895C > T or p.R299X inherited from the mother and c.587C > A or p.D98E inherited from the father.

Conclusions

Until now, these two identified mutations in GLRA1 have not been reported before as compound mutations. What clearly emerges within our study is the clinical heterogeneity in the same family. In fact, even though in the same pedigree, the affected mother showed only mild startle responses to unexpected noise stimuli, which might be explained by variable expressivity, while the father, showed no clear signs of symptomatology, which might be explained by non-penetrance. Finally, the two brothers have different form of the disease, even if the compound heterozygous mutations in GLRA1 are the same, showing that the same mutation in GLRA1 could have different phenotypic expressions and suggesting an underling mechanism of variable expressivity.
Literature
1.
go back to reference Eulenburg V, Becker K, Gomeza J, Schmitt B, Becker CM, Betz H. Mutations within the human GLYT2 (SLC6A5) gene associated with hyperekplexia. Biochem Biophys Res Commun. 2006;348(2):400–5.CrossRef Eulenburg V, Becker K, Gomeza J, Schmitt B, Becker CM, Betz H. Mutations within the human GLYT2 (SLC6A5) gene associated with hyperekplexia. Biochem Biophys Res Commun. 2006;348(2):400–5.CrossRef
4.
go back to reference Tijssen MAJ, Rees MI. Hyperekplexia. Editors In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. GeneReviews® [Internet]. Seattle: University of Washington; 2007. p. 1993–2018. [updated 2012 Oct 4]. Tijssen MAJ, Rees MI. Hyperekplexia. Editors In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. GeneReviews® [Internet]. Seattle: University of Washington; 2007. p. 1993–2018. [updated 2012 Oct 4].
6.
go back to reference Bakker MJ, van Dijk JG, van den Maagdenberg AM, Tijssen MA. Startle syndromes. Lancet Neurol. 2006;5(6):513–24.CrossRef Bakker MJ, van Dijk JG, van den Maagdenberg AM, Tijssen MA. Startle syndromes. Lancet Neurol. 2006;5(6):513–24.CrossRef
7.
go back to reference Shiang R, Ryan SG, Zhu YZ, Hahn AF, O'Connell P, Wasmuth JJ. Mutations in the alpha 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet. 1993;5(4):351–8.CrossRef Shiang R, Ryan SG, Zhu YZ, Hahn AF, O'Connell P, Wasmuth JJ. Mutations in the alpha 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet. 1993;5(4):351–8.CrossRef
10.
go back to reference Vigevano F, Di Capua M, Dalla Bernardina B. Startle disease: an avoidable cause of sudden infant death. Lancet. 1989;1(8631):216.CrossRef Vigevano F, Di Capua M, Dalla Bernardina B. Startle disease: an avoidable cause of sudden infant death. Lancet. 1989;1(8631):216.CrossRef
12.
go back to reference Zhou L, Chillag KL, Nigro MA. Hyperekplexia: a treatable neurogenetic disease. Brain and Development. 2002;24(7):669–74.CrossRef Zhou L, Chillag KL, Nigro MA. Hyperekplexia: a treatable neurogenetic disease. Brain and Development. 2002;24(7):669–74.CrossRef
13.
go back to reference Sirén A, Legros B, Chahine L, Misson JP, Pandolfo M. Hyperekplexia in Kurdish families: a possible GLRA1 founder mutation. Neurology. 2006;67(1):137–9.CrossRef Sirén A, Legros B, Chahine L, Misson JP, Pandolfo M. Hyperekplexia in Kurdish families: a possible GLRA1 founder mutation. Neurology. 2006;67(1):137–9.CrossRef
14.
go back to reference Suhren O, Bruyn GW, Tuynman A. Hyperexplexia, a hereditary startle syndrome. J Neurol Sci. 1966;3:577–605.CrossRef Suhren O, Bruyn GW, Tuynman A. Hyperexplexia, a hereditary startle syndrome. J Neurol Sci. 1966;3:577–605.CrossRef
15.
go back to reference Tijssen MA, Vergouwe MN, van Dijk JG, Rees M, Frants RR, Brown P. Major and minor form of hereditary hyperekplexia. Mov Disord. 2002;17(4):826–30.CrossRef Tijssen MA, Vergouwe MN, van Dijk JG, Rees M, Frants RR, Brown P. Major and minor form of hereditary hyperekplexia. Mov Disord. 2002;17(4):826–30.CrossRef
19.
go back to reference Humeny A, Bonk T, Becker K, et al. A novel recessive hyperekplexia allele GLRA1 (S231R): genotyping by MALDI-TOF mass spectrometry and functional characterisation as a determinant of cellular glycine receptor trafficking. Eur J Hum Genet. 2002;10(3):188–96.CrossRef Humeny A, Bonk T, Becker K, et al. A novel recessive hyperekplexia allele GLRA1 (S231R): genotyping by MALDI-TOF mass spectrometry and functional characterisation as a determinant of cellular glycine receptor trafficking. Eur J Hum Genet. 2002;10(3):188–96.CrossRef
21.
go back to reference Kwok JB, Raskin S, Morgan G, Antoniuk SA, Bruk I, Schofield PR. Mutations in the glycine receptor alpha1 subunit (GLRA1) gene in hereditary hyperekplexia pedigrees: evidence for non-penetrance of mutation Y279C. J Med Genet. 2001;38(6):E17.CrossRef Kwok JB, Raskin S, Morgan G, Antoniuk SA, Bruk I, Schofield PR. Mutations in the glycine receptor alpha1 subunit (GLRA1) gene in hereditary hyperekplexia pedigrees: evidence for non-penetrance of mutation Y279C. J Med Genet. 2001;38(6):E17.CrossRef
24.
go back to reference Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 2004;84(4):1051–95.CrossRef Lynch JW. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 2004;84(4):1051–95.CrossRef
25.
go back to reference Becker K, Hohoff C, Schmitt B, et al. Identification of the microdeletion breakpoint in a GLRA1null allele of Turkish hyperekplexia patients. Hum Mutat. 2006;27(10):1061–2.CrossRef Becker K, Hohoff C, Schmitt B, et al. Identification of the microdeletion breakpoint in a GLRA1null allele of Turkish hyperekplexia patients. Hum Mutat. 2006;27(10):1061–2.CrossRef
Metadata
Title
Clinical features and genetic analysis of two siblings with startle disease in an Italian family: a case report
Authors
Teresa Sprovieri
Carmine Ungaro
Serena Sivo
Michela Quintiliani
Ilaria Contaldo
Chiara Veredice
Luigi Citrigno
Maria Muglia
Francesca Cavalcanti
Sebastiano Cavallaro
Eugenio Mercuri
Domenica Battaglia
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Clonazepam
Published in
BMC Medical Genetics / Issue 1/2019
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-019-0779-x

Other articles of this Issue 1/2019

BMC Medical Genetics 1/2019 Go to the issue