Skip to main content
Top
Published in: BMC Medical Genetics 1/2018

Open Access 01-12-2018 | Research article

Genetic insights into fetal growth and measures of glycaemic regulation and adiposity in adulthood: a family-based study

Authors: Mette Hollensted, Claus T. Ekstrøm, Oluf Pedersen, Hans Eiberg, Torben Hansen, Anette Prior Gjesing

Published in: BMC Medical Genetics | Issue 1/2018

Login to get access

Abstract

Background

The genetics of fetal insulin release and/or action have been suggested to affect fetal growth, adult insulin resistance and adult body composition. The genetic correlation between body composition at birth versus glycaemic regulation and body composition in adulthood have, however, not been well studied. We therefore aimed to investigate these genetic correlations in a family-based cohort.

Methods

A Danish family cohort of 434 individuals underwent an oral glucose tolerance test with subsequent calculation of surrogate measures of serum insulin response and insulin sensitivity. Measures of fetal growth were retrieved from midwife journals. Heritability and genetic correlations were estimated using a variance component model.

Results

A high heritability of 0.80 was found for birth weight, whereas ponderal index had a heritability of 0.46. Adult insulin sensitivity measured as Matsuda index was genetically correlated with both birth weight and ponderal index (ρG = 0.36 (95% CI: 0.03; 0.69) and ρG = 0.52 (95% CI, 0.15; 0.89), respectively). Only birth weight showed a significant genetic correlation with adult weight (ρG = 0.38 (95% CI: 0.09; 0.67)) whereas only ponderal index was genetically inversely correlated with fasting insulin (ρG = - 0.47 (95% CI: - 0.86; - 0.08) and area under the curve for insulin release during the oral glucose tolerance test (ρG = - 0.66 (95% CI: - 1.13; - 0.19)).
Individual as well as combined adjustment for 45 selected birth weight, obesity and type 2 diabetes susceptibility gene variants did not affect the correlations.

Conclusions

The genetics of both birth weight and ponderal index appear to be under the same genetic influence as adult insulin resistance. Furthermore, ponderal index and adult insulin release seem to be partly shared, as well as the genetics of birth weight and adult weight.
Word count abstract: 281.
Appendix
Available only for authorised users
Literature
1.
go back to reference Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am J Clin Nutr. 2000;71(5 Suppl):1344S–52S.CrossRefPubMed Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am J Clin Nutr. 2000;71(5 Suppl):1344S–52S.CrossRefPubMed
5.
go back to reference Hattersley AT, Tooke JE. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet. 1999;353(9166):1789–92.CrossRefPubMed Hattersley AT, Tooke JE. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet. 1999;353(9166):1789–92.CrossRefPubMed
6.
go back to reference Rogers I. The influence of birthweight and intrauterine environment on adiposity and fat distribution in later life. Int J Obes Relat Metab Disord. 2003;27(7):755–77.CrossRefPubMed Rogers I. The influence of birthweight and intrauterine environment on adiposity and fat distribution in later life. Int J Obes Relat Metab Disord. 2003;27(7):755–77.CrossRefPubMed
7.
go back to reference Parsons TJ, Power C, et al. Fetal and early life growth and body mass index from birth to early adulthood in 1958 British cohort: longitudinal study. BMJ. 2001;323(7325):1331–5.CrossRefPubMedPubMedCentral Parsons TJ, Power C, et al. Fetal and early life growth and body mass index from birth to early adulthood in 1958 British cohort: longitudinal study. BMJ. 2001;323(7325):1331–5.CrossRefPubMedPubMedCentral
8.
go back to reference Jelenkovic A, Yokoyama Y, et al. Association between birthweight and later body mass index: an individual-based pooled analysis of 27 twin cohorts participating in the CODATwins project. Int J Epidemiol. 2017;46(5):1488–98.CrossRefPubMedPubMedCentral Jelenkovic A, Yokoyama Y, et al. Association between birthweight and later body mass index: an individual-based pooled analysis of 27 twin cohorts participating in the CODATwins project. Int J Epidemiol. 2017;46(5):1488–98.CrossRefPubMedPubMedCentral
9.
go back to reference Loos RJ, Beunen G, et al. Birth weight and body composition in young women: a prospective twin study. Am J Clin Nutr. 2002;75(4):676–82.CrossRefPubMed Loos RJ, Beunen G, et al. Birth weight and body composition in young women: a prospective twin study. Am J Clin Nutr. 2002;75(4):676–82.CrossRefPubMed
10.
go back to reference Allison DB, Paultre F, et al. Is the intra-uterine period really a critical period for the development of adiposity? Int J Obes Relat Metab Disord. 1995;19(6):397–402.PubMed Allison DB, Paultre F, et al. Is the intra-uterine period really a critical period for the development of adiposity? Int J Obes Relat Metab Disord. 1995;19(6):397–402.PubMed
12.
go back to reference Kilpeläinen TO, den Hoed M, et al. Obesity-susceptibility loci have a limited influence on birth weight: a meta-analysis of up to 28,219 individuals. Am J Clin Nutr. 2011;93(4):851–60.CrossRefPubMed Kilpeläinen TO, den Hoed M, et al. Obesity-susceptibility loci have a limited influence on birth weight: a meta-analysis of up to 28,219 individuals. Am J Clin Nutr. 2011;93(4):851–60.CrossRefPubMed
13.
go back to reference Elks CE, Loos RJ, et al. Adult obesity susceptibility variants are associated with greater childhood weight gain and a faster tempo of growth: the 1946 British birth cohort study. Am J Clin Nutr. 2012;95(5):1150–6.CrossRefPubMedPubMedCentral Elks CE, Loos RJ, et al. Adult obesity susceptibility variants are associated with greater childhood weight gain and a faster tempo of growth: the 1946 British birth cohort study. Am J Clin Nutr. 2012;95(5):1150–6.CrossRefPubMedPubMedCentral
14.
17.
go back to reference Dupuis J, Langenberg C, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16.CrossRefPubMedPubMedCentral Dupuis J, Langenberg C, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16.CrossRefPubMedPubMedCentral
18.
go back to reference Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.CrossRefPubMed Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.CrossRefPubMed
19.
go back to reference Heitmann BL. Evaluation of body fat estimated from body mass index, skinfolds and impedance. A comparative study. Eur J Clin Nutr. 1990;44(11):831–7.PubMed Heitmann BL. Evaluation of body fat estimated from body mass index, skinfolds and impedance. A comparative study. Eur J Clin Nutr. 1990;44(11):831–7.PubMed
20.
go back to reference Gjesing AP, Ekstrøm CT, et al. Fasting and oral glucose-stimulated levels of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are highly familial traits. Diabetologia. 2012;55(5):1338–45.CrossRefPubMed Gjesing AP, Ekstrøm CT, et al. Fasting and oral glucose-stimulated levels of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are highly familial traits. Diabetologia. 2012;55(5):1338–45.CrossRefPubMed
21.
go back to reference Voight BF, Kang HM, et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 2012;8(8):e1002793.CrossRefPubMedPubMedCentral Voight BF, Kang HM, et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 2012;8(8):e1002793.CrossRefPubMedPubMedCentral
22.
25.
go back to reference Gjesing AP, Hornbak M, et al. High heritability and genetic correlation of intravenous glucose- and tolbutamide-induced insulin secretion among non-diabetic family members of type 2 diabetic patients. Diabetologia. 2014;57(6):1173–81.CrossRefPubMed Gjesing AP, Hornbak M, et al. High heritability and genetic correlation of intravenous glucose- and tolbutamide-induced insulin secretion among non-diabetic family members of type 2 diabetic patients. Diabetologia. 2014;57(6):1173–81.CrossRefPubMed
26.
go back to reference Gielen M, Lindsey PJ, et al. Modeling genetic and environmental factors to increase heritability and ease the identification of candidate genes for birth weight: a twin study. Behav Genet. 2008;38(1):44–54.CrossRefPubMed Gielen M, Lindsey PJ, et al. Modeling genetic and environmental factors to increase heritability and ease the identification of candidate genes for birth weight: a twin study. Behav Genet. 2008;38(1):44–54.CrossRefPubMed
27.
go back to reference Hur YM, Luciano M, et al. A comparison of twin birthweight data from Australia, the Netherlands, the United States, Japan, and South Korea: are genetic and environmental variations in birthweight similar in Caucasians and East Asians? Twin Res Hum Genet. 2005;8(6):638–48.CrossRefPubMed Hur YM, Luciano M, et al. A comparison of twin birthweight data from Australia, the Netherlands, the United States, Japan, and South Korea: are genetic and environmental variations in birthweight similar in Caucasians and East Asians? Twin Res Hum Genet. 2005;8(6):638–48.CrossRefPubMed
28.
go back to reference Yokoyama Y, Jelenkovic A, et al. Genetic and environmental factors affecting birth size variation: a pooled individual-based analysis of secular trends and global geographical differences using 26 twin cohorts. Int J Epidemiol. 2018;47(4):1195–206.CrossRefPubMedPubMedCentral Yokoyama Y, Jelenkovic A, et al. Genetic and environmental factors affecting birth size variation: a pooled individual-based analysis of secular trends and global geographical differences using 26 twin cohorts. Int J Epidemiol. 2018;47(4):1195–206.CrossRefPubMedPubMedCentral
29.
go back to reference Magnus P. Further evidence for a significant effect of fetal genes on variation in birth-weight. Clin Genet. 1984;26(4):289–96.CrossRefPubMed Magnus P. Further evidence for a significant effect of fetal genes on variation in birth-weight. Clin Genet. 1984;26(4):289–96.CrossRefPubMed
30.
go back to reference Cai G, Cole SA, et al. Bivariate linkage confirms genetic contribution to fetal origins of childhood growth and cardiovascular disease risk in Hispanic children. Hum Genet. 2007;121(6):737–44.CrossRefPubMed Cai G, Cole SA, et al. Bivariate linkage confirms genetic contribution to fetal origins of childhood growth and cardiovascular disease risk in Hispanic children. Hum Genet. 2007;121(6):737–44.CrossRefPubMed
31.
go back to reference Choh AC, Curran JE, et al. Differences in the heritability of growth and growth velocity during infancy and associations with FTO variants. Obesity (Silver Spring). 2011;19(9):1847–54.CrossRef Choh AC, Curran JE, et al. Differences in the heritability of growth and growth velocity during infancy and associations with FTO variants. Obesity (Silver Spring). 2011;19(9):1847–54.CrossRef
32.
34.
go back to reference Choh AC, Lee M, et al. Gene-by-age effects on BMI from birth to adulthood: the Fels longitudinal study. Obesity (Silver Spring). 2014;22(3):875–81.CrossRef Choh AC, Lee M, et al. Gene-by-age effects on BMI from birth to adulthood: the Fels longitudinal study. Obesity (Silver Spring). 2014;22(3):875–81.CrossRef
Metadata
Title
Genetic insights into fetal growth and measures of glycaemic regulation and adiposity in adulthood: a family-based study
Authors
Mette Hollensted
Claus T. Ekstrøm
Oluf Pedersen
Hans Eiberg
Torben Hansen
Anette Prior Gjesing
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2018
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-018-0718-2

Other articles of this Issue 1/2018

BMC Medical Genetics 1/2018 Go to the issue