Skip to main content
Top
Published in: BMC Medical Genetics 1/2017

Open Access 01-12-2017 | Research article

Functional study of DAND5 variant in patients with Congenital Heart Disease and laterality defects

Authors: Fernando Cristo, José M. Inácio, Salomé de Almeida, Patrícia Mendes, Duarte Saraiva Martins, José Maio, Rui Anjos, José A. Belo

Published in: BMC Medical Genetics | Issue 1/2017

Login to get access

Abstract

Background

Perturbations on the Left-Right axis establishment lead to laterality defects, with frequently associated Congenital Heart Diseases (CHDs). Indeed, in the last decade, it has been reported that the etiology of isolated cases of CHDs or cases of laterality defects with associated CHDs is linked with variants of genes involved in the Nodal signaling pathway.

Methods

With this in mind, we analyzed a cohort of 38 unrelated patients with Congenital Heart Defects that can arise from initial perturbations in the formation of the Left-Right axis and 40 unrelated ethnically matched healthy individuals as a control population. Genomic DNA was extracted from buccal epithelial cells, and variants screening was performed by PCR and direct sequencing. A Nodal-dependent luciferase assay was conducted in order to determine the functional effect of the variant found.

Results

In this work, we report two patients with a DAND5 heterozygous non-synonymous variant (c.455G > A) in the functional domain of the DAND5 protein (p.R152H), a master regulator of Nodal signaling. Patient 1 presents left isomerism, ventricular septal defect with overriding aorta and pulmonary atresia, while patient 2 presents ventricular septal defect with overriding aorta, right ventricular hypertrophy and pulmonary atresia (a case of extreme tetralogy of Fallot phenotype). The functional analysis assay showed a significant decrease in the activity of this variant protein when compared to its wild-type counterpart.

Conclusion

Altogether, our results provide new insight into the molecular mechanism of the laterality defects and related CHDs, priming for the first time DAND5 as one of multiple candidate determinants for CHDs in humans.
Appendix
Available only for authorised users
Literature
1.
go back to reference Srivastava D. Genetic assembly of the heart: implications for congenital heart disease. Annu Rev Physiol. 2001;63:451–69.PubMedCrossRef Srivastava D. Genetic assembly of the heart: implications for congenital heart disease. Annu Rev Physiol. 2001;63:451–69.PubMedCrossRef
2.
go back to reference Andersen TA, Troelsen Kde L, Larsen LA. Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci. 2014;71(8):1327–52.PubMedCrossRef Andersen TA, Troelsen Kde L, Larsen LA. Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci. 2014;71(8):1327–52.PubMedCrossRef
3.
go back to reference Koefoed K, Veland IR, Pedersen LB, Larsen LA, Christensen ST. Cilia and coordination of signaling networks during heart development. Organ. 2014;10(1):108–25. Koefoed K, Veland IR, Pedersen LB, Larsen LA, Christensen ST. Cilia and coordination of signaling networks during heart development. Organ. 2014;10(1):108–25.
4.
go back to reference Pediatric Cardiac Genomics C, Gelb B, Brueckner M, Chung W, Goldmuntz E, Kaltman J, Kaski JP, Kim R, Kline J, Mercer-Rosa L, et al. The Congenital Heart Disease Genetic Network Study: rationale, design, and early results. Circ Res. 2013;112(4):698–706.CrossRef Pediatric Cardiac Genomics C, Gelb B, Brueckner M, Chung W, Goldmuntz E, Kaltman J, Kaski JP, Kim R, Kline J, Mercer-Rosa L, et al. The Congenital Heart Disease Genetic Network Study: rationale, design, and early results. Circ Res. 2013;112(4):698–706.CrossRef
5.
go back to reference Cecchetto A, Rampazzo A, Angelini A, Bianco LD, Padalino M, Stellin G, Daliento L. From molecular mechanisms of cardiac development to genetic substrate of congenital heart diseases. Futur Cardiol. 2010;6(3):373–93.CrossRef Cecchetto A, Rampazzo A, Angelini A, Bianco LD, Padalino M, Stellin G, Daliento L. From molecular mechanisms of cardiac development to genetic substrate of congenital heart diseases. Futur Cardiol. 2010;6(3):373–93.CrossRef
6.
go back to reference Icardo JM, Garcia Rincon JM, Ros MA. Congenital heart disease, heterotaxia and laterality. Revista espanola de cardiologia. 2002;55(9):962–74.PubMedCrossRef Icardo JM, Garcia Rincon JM, Ros MA. Congenital heart disease, heterotaxia and laterality. Revista espanola de cardiologia. 2002;55(9):962–74.PubMedCrossRef
7.
go back to reference Levin M. The embryonic origins of left-right asymmetry. Crit Rev Oral Biol Med. 2004;15(4):197–206.PubMedCrossRef Levin M. The embryonic origins of left-right asymmetry. Crit Rev Oral Biol Med. 2004;15(4):197–206.PubMedCrossRef
8.
go back to reference Shiratori H, Hamada H. The left-right axis in the mouse: from origin to morphology. Development. 2006;133(11):2095–104.PubMedCrossRef Shiratori H, Hamada H. The left-right axis in the mouse: from origin to morphology. Development. 2006;133(11):2095–104.PubMedCrossRef
9.
go back to reference Shiratori H, Hamada H. TGFbeta signaling in establishing left-right asymmetry. Semin Cell Dev Biol. 2014;32:80–4.PubMedCrossRef Shiratori H, Hamada H. TGFbeta signaling in establishing left-right asymmetry. Semin Cell Dev Biol. 2014;32:80–4.PubMedCrossRef
10.
go back to reference Nakamura T, Hamada H. Left-right patterning: conserved and divergent mechanisms. Development. 2012;139(18):3257–62.PubMedCrossRef Nakamura T, Hamada H. Left-right patterning: conserved and divergent mechanisms. Development. 2012;139(18):3257–62.PubMedCrossRef
11.
go back to reference Kosaki R, Gebbia M, Kosaki K, Lewin M, Bowers P, Towbin JA, Casey B. Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet. 1999;82(1):70–6.PubMedCrossRef Kosaki R, Gebbia M, Kosaki K, Lewin M, Bowers P, Towbin JA, Casey B. Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet. 1999;82(1):70–6.PubMedCrossRef
12.
go back to reference Ma L, Selamet Tierney ES, Lee T, Lanzano P, Chung WK. Mutations in ZIC3 and ACVR2B are a common cause of heterotaxy and associated cardiovascular anomalies. Cardiol Young. 2012;22(2):194–201.PubMedCrossRef Ma L, Selamet Tierney ES, Lee T, Lanzano P, Chung WK. Mutations in ZIC3 and ACVR2B are a common cause of heterotaxy and associated cardiovascular anomalies. Cardiol Young. 2012;22(2):194–201.PubMedCrossRef
13.
go back to reference Deng X, Zhou J, Li FF, Yan P, Zhao EY, Hao L, Yu KJ, Liu SL. Characterization of nodal/TGF-lefty signaling pathway gene variants for possible roles in congenital heart diseases. PLoS One. 2014;9(8):e104535.PubMedPubMedCentralCrossRef Deng X, Zhou J, Li FF, Yan P, Zhao EY, Hao L, Yu KJ, Liu SL. Characterization of nodal/TGF-lefty signaling pathway gene variants for possible roles in congenital heart diseases. PLoS One. 2014;9(8):e104535.PubMedPubMedCentralCrossRef
14.
go back to reference Kosaki K, Bassi MT, Kosaki R, Lewin M, Belmont J, Schauer G, Casey B. Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. Am J Hum Genet. 1999;64(3):712–21.PubMedPubMedCentralCrossRef Kosaki K, Bassi MT, Kosaki R, Lewin M, Belmont J, Schauer G, Casey B. Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. Am J Hum Genet. 1999;64(3):712–21.PubMedPubMedCentralCrossRef
15.
go back to reference Goldmuntz E, Bamford R, Karkera JD, dela Cruz J, Roessler E, Muenke M. CFC1 mutations in patients with transposition of the great arteries and double-outlet right ventricle. Am J Hum Genet. 2002;70(3):776–80.PubMedPubMedCentralCrossRef Goldmuntz E, Bamford R, Karkera JD, dela Cruz J, Roessler E, Muenke M. CFC1 mutations in patients with transposition of the great arteries and double-outlet right ventricle. Am J Hum Genet. 2002;70(3):776–80.PubMedPubMedCentralCrossRef
16.
go back to reference Wang B, Wang J, Liu S, Han X, Xie X, Tao Y, Yan J, Ma X. CFC1 mutations in Chinese children with congenital heart disease. Int J Cardiol. 2011;146(1):86–8.PubMedCrossRef Wang B, Wang J, Liu S, Han X, Xie X, Tao Y, Yan J, Ma X. CFC1 mutations in Chinese children with congenital heart disease. Int J Cardiol. 2011;146(1):86–8.PubMedCrossRef
17.
go back to reference Roessler E, Ouspenskaia MV, Karkera JD, Velez JI, Kantipong A, Lacbawan F, Bowers P, Belmont JW, Towbin JA, Goldmuntz E, et al. Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am J Hum Genet. 2008;83(1):18–29.PubMedPubMedCentralCrossRef Roessler E, Ouspenskaia MV, Karkera JD, Velez JI, Kantipong A, Lacbawan F, Bowers P, Belmont JW, Towbin JA, Goldmuntz E, et al. Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am J Hum Genet. 2008;83(1):18–29.PubMedPubMedCentralCrossRef
18.
go back to reference Wang B, Yan J, Peng Z, Wang J, Liu S, Xie X, Ma X. Teratocarcinoma-derived growth factor 1 (TDGF1) sequence variants in patients with congenital heart defect. Int J Cardiol. 2011;146(2):225–7.PubMedCrossRef Wang B, Yan J, Peng Z, Wang J, Liu S, Xie X, Ma X. Teratocarcinoma-derived growth factor 1 (TDGF1) sequence variants in patients with congenital heart defect. Int J Cardiol. 2011;146(2):225–7.PubMedCrossRef
19.
go back to reference De Luca A, Sarkozy A, Consoli F, Ferese R, Guida V, Dentici ML, Mingarelli R, Bellacchio E, Tuo G, Limongelli G, et al. Familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart. 2010;96(9):673–7.PubMedCrossRef De Luca A, Sarkozy A, Consoli F, Ferese R, Guida V, Dentici ML, Mingarelli R, Bellacchio E, Tuo G, Limongelli G, et al. Familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart. 2010;96(9):673–7.PubMedCrossRef
20.
go back to reference Wang B, Yan J, Mi R, Zhou S, Xie X, Wang J, Ma X. Forkhead box H1 (FOXH1) sequence variants in ventricular septal defect. Int J Cardiol. 2010;145(1):83–5.PubMedCrossRef Wang B, Yan J, Mi R, Zhou S, Xie X, Wang J, Ma X. Forkhead box H1 (FOXH1) sequence variants in ventricular septal defect. Int J Cardiol. 2010;145(1):83–5.PubMedCrossRef
21.
go back to reference Mohapatra B, Casey B, Li H, Ho-Dawson T, Smith L, Fernbach SD, Molinari L, Niesh SR, Jefferies JL, Craigen WJ, et al. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet. 2009;18(5):861–71.PubMedCrossRef Mohapatra B, Casey B, Li H, Ho-Dawson T, Smith L, Fernbach SD, Molinari L, Niesh SR, Jefferies JL, Craigen WJ, et al. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet. 2009;18(5):861–71.PubMedCrossRef
22.
go back to reference Roessler E, Pei W, Ouspenskaia MV, Karkera JD, Velez JI, Banerjee-Basu S, Gibney G, Lupo PJ, Mitchell LE, Towbin JA, et al. Cumulative ligand activity of NODAL mutations and modifiers are linked to human heart defects and holoprosencephaly. Mol Genet Metab. 2009;98(1–2):225–34.PubMedPubMedCentralCrossRef Roessler E, Pei W, Ouspenskaia MV, Karkera JD, Velez JI, Banerjee-Basu S, Gibney G, Lupo PJ, Mitchell LE, Towbin JA, et al. Cumulative ligand activity of NODAL mutations and modifiers are linked to human heart defects and holoprosencephaly. Mol Genet Metab. 2009;98(1–2):225–34.PubMedPubMedCentralCrossRef
23.
go back to reference Wang J, Xin YF, Xu WJ, Liu ZM, Qiu XB, Qu XK, Xu L, Li X, Yang YQ. Prevalence and spectrum of PITX2c mutations associated with congenital heart disease. DNA Cell Biol. 2013;32(12):708–16.PubMedPubMedCentralCrossRef Wang J, Xin YF, Xu WJ, Liu ZM, Qiu XB, Qu XK, Xu L, Li X, Yang YQ. Prevalence and spectrum of PITX2c mutations associated with congenital heart disease. DNA Cell Biol. 2013;32(12):708–16.PubMedPubMedCentralCrossRef
24.
go back to reference Yuan F, Zhao L, Wang J, Zhang W, Li X, Qiu XB, Li RG, Xu YJ, Xu L, Qu XK, et al. PITX2c loss-of-function mutations responsible for congenital atrial septal defects. Int J Med Sci. 2013;10(10):1422–9.PubMedPubMedCentralCrossRef Yuan F, Zhao L, Wang J, Zhang W, Li X, Qiu XB, Li RG, Xu YJ, Xu L, Qu XK, et al. PITX2c loss-of-function mutations responsible for congenital atrial septal defects. Int J Med Sci. 2013;10(10):1422–9.PubMedPubMedCentralCrossRef
25.
go back to reference Bamford RN, Roessler E, Burdine RD, Saplakoglu U, dela Cruz J, Splitt M, Goodship JA, Towbin J, Bowers P, Ferrero GB, et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet. 2000;26(3):365–9.PubMedCrossRef Bamford RN, Roessler E, Burdine RD, Saplakoglu U, dela Cruz J, Splitt M, Goodship JA, Towbin J, Bowers P, Ferrero GB, et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet. 2000;26(3):365–9.PubMedCrossRef
26.
go back to reference Belo JA, Silva AC, Borges AC, Filipe M, Bento M, Goncalves L, Vitorino M, Salgueiro AM, Texeira V, Tavares AT, et al. Generating asymmetries in the early vertebrate embryo: the role of the Cerberus-like family. The International journal of developmental biology. 2009;53(8–10):1399–407.PubMedCrossRef Belo JA, Silva AC, Borges AC, Filipe M, Bento M, Goncalves L, Vitorino M, Salgueiro AM, Texeira V, Tavares AT, et al. Generating asymmetries in the early vertebrate embryo: the role of the Cerberus-like family. The International journal of developmental biology. 2009;53(8–10):1399–407.PubMedCrossRef
27.
go back to reference Oki S, Kitajima K, Marques S, Belo JA, Yokoyama T, Hamada H, Meno C. Reversal of left-right asymmetry induced by aberrant Nodal signaling in the node of mouse embryos. Development. 2009;136(23):3917–25.PubMedCrossRef Oki S, Kitajima K, Marques S, Belo JA, Yokoyama T, Hamada H, Meno C. Reversal of left-right asymmetry induced by aberrant Nodal signaling in the node of mouse embryos. Development. 2009;136(23):3917–25.PubMedCrossRef
28.
go back to reference Inacio JM, Marques S, Nakamura T, Shinohara K, Meno C, Hamada H, Belo JA. The dynamic right-to-left translocation of Cerl2 is involved in the regulation and termination of Nodal activity in the mouse node. PLoS One. 2013;8(3):e60406.PubMedPubMedCentralCrossRef Inacio JM, Marques S, Nakamura T, Shinohara K, Meno C, Hamada H, Belo JA. The dynamic right-to-left translocation of Cerl2 is involved in the regulation and termination of Nodal activity in the mouse node. PLoS One. 2013;8(3):e60406.PubMedPubMedCentralCrossRef
29.
go back to reference Kawasumi A, Nakamura T, Iwai N, Yashiro K, Saijoh Y, Belo JA, Shiratori H, Hamada H. Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos. Dev Biol. 2011;353(2):321–30.PubMedPubMedCentralCrossRef Kawasumi A, Nakamura T, Iwai N, Yashiro K, Saijoh Y, Belo JA, Shiratori H, Hamada H. Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos. Dev Biol. 2011;353(2):321–30.PubMedPubMedCentralCrossRef
30.
go back to reference Araujo AC, Marques S, Belo JA. Targeted inactivation of Cerberus like-2 leads to left ventricular cardiac hyperplasia and systolic dysfunction in the mouse. PLoS One. 2014;9(7):e102716.PubMedPubMedCentralCrossRef Araujo AC, Marques S, Belo JA. Targeted inactivation of Cerberus like-2 leads to left ventricular cardiac hyperplasia and systolic dysfunction in the mouse. PLoS One. 2014;9(7):e102716.PubMedPubMedCentralCrossRef
31.
go back to reference Marques S, Borges AC, Silva AC, Freitas S, Cordenonsi M, Belo JA. The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis. Genes Dev. 2004;18(19):2342–7.PubMedPubMedCentralCrossRef Marques S, Borges AC, Silva AC, Freitas S, Cordenonsi M, Belo JA. The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis. Genes Dev. 2004;18(19):2342–7.PubMedPubMedCentralCrossRef
32.
go back to reference Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine. 2015;17(5):405–24.PubMedPubMedCentralCrossRef Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine. 2015;17(5):405–24.PubMedPubMedCentralCrossRef
33.
go back to reference Goodship JA, Hall D, Topf A, Mamasoula C, Griffin H, Rahman TJ, Glen E, Tan H, Palomino Doza J, Relton CL, et al. A common variant in the PTPN11 gene contributes to the risk of tetralogy of Fallot. Circ Cardiovasc Genet. 2012;5(3):287–92.PubMedPubMedCentralCrossRef Goodship JA, Hall D, Topf A, Mamasoula C, Griffin H, Rahman TJ, Glen E, Tan H, Palomino Doza J, Relton CL, et al. A common variant in the PTPN11 gene contributes to the risk of tetralogy of Fallot. Circ Cardiovasc Genet. 2012;5(3):287–92.PubMedPubMedCentralCrossRef
34.
go back to reference Nowotschin S, Liao J, Gage PJ, Epstein JA, Campione M, Morrow BE. Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development. 2006;133(8):1565–73.PubMedCrossRef Nowotschin S, Liao J, Gage PJ, Epstein JA, Campione M, Morrow BE. Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development. 2006;133(8):1565–73.PubMedCrossRef
35.
go back to reference Martin JF, et al. Chapter 4.3 - Pitx2 in Cardiac Left–Right Asymmetry and Human Disease. Heart Development and Regeneration. Boston: Academic Press; 2010. 307–322. Martin JF, et al. Chapter 4.3 - Pitx2 in Cardiac Left–Right Asymmetry and Human Disease. Heart Development and Regeneration. Boston: Academic Press; 2010. 307–322.
36.
go back to reference Ramsdell AF. Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination. Dev Biol. 2005;288(1):1–20.PubMedCrossRef Ramsdell AF. Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination. Dev Biol. 2005;288(1):1–20.PubMedCrossRef
37.
go back to reference Shiraishi I, Ichikawa H. Human heterotaxy syndrome - from molecular genetics to clinical features, management, and prognosis. Circ J. 2012;76(9):2066–75.PubMedCrossRef Shiraishi I, Ichikawa H. Human heterotaxy syndrome - from molecular genetics to clinical features, management, and prognosis. Circ J. 2012;76(9):2066–75.PubMedCrossRef
38.
go back to reference Wren C, Reinhardt Z, Khawaja K. Twenty-year trends in diagnosis of life-threatening neonatal cardiovascular malformations. Arch Dis Child Fetal Neonatal Ed. 2008;93(1):F33–5.PubMedCrossRef Wren C, Reinhardt Z, Khawaja K. Twenty-year trends in diagnosis of life-threatening neonatal cardiovascular malformations. Arch Dis Child Fetal Neonatal Ed. 2008;93(1):F33–5.PubMedCrossRef
39.
go back to reference Huang JB, Liu YL, Sun PW, Lv XD, Du M, Fan XM. Molecular mechanisms of congenital heart disease. Cardiovasc Pathol. 2010;19(5):e183–93.PubMedCrossRef Huang JB, Liu YL, Sun PW, Lv XD, Du M, Fan XM. Molecular mechanisms of congenital heart disease. Cardiovasc Pathol. 2010;19(5):e183–93.PubMedCrossRef
40.
go back to reference Channabasappa SM, Mohan HS, Sarma J. A patient with situs inversus totalis presenting for emergency laparoscopic appendectomy: Consideration for safe anesthetic management. Anesth Essays Res. 2013;7(1):127–9.PubMedPubMedCentralCrossRef Channabasappa SM, Mohan HS, Sarma J. A patient with situs inversus totalis presenting for emergency laparoscopic appendectomy: Consideration for safe anesthetic management. Anesth Essays Res. 2013;7(1):127–9.PubMedPubMedCentralCrossRef
41.
go back to reference Gaio U, Schweickert A, Fischer A, Garratt AN, Muller T, Ozcelik C, Lankes W, Strehle M, Britsch S, Blum M, et al. A role of the cryptic gene in the correct establishment of the left-right axis. Curr Biol. 1999;9(22):1339–42.PubMedCrossRef Gaio U, Schweickert A, Fischer A, Garratt AN, Muller T, Ozcelik C, Lankes W, Strehle M, Britsch S, Blum M, et al. A role of the cryptic gene in the correct establishment of the left-right axis. Curr Biol. 1999;9(22):1339–42.PubMedCrossRef
42.
go back to reference Megarbane A, Salem N, Stephan E, Ashoush R, Lenoir D, Delague V, Kassab R, Loiselet J, Bouvagnet P. X-linked transposition of the great arteries and incomplete penetrance among males with a nonsense mutation in ZIC3. Eur J Hum Genet. 2000;8(9):704–8.PubMedCrossRef Megarbane A, Salem N, Stephan E, Ashoush R, Lenoir D, Delague V, Kassab R, Loiselet J, Bouvagnet P. X-linked transposition of the great arteries and incomplete penetrance among males with a nonsense mutation in ZIC3. Eur J Hum Genet. 2000;8(9):704–8.PubMedCrossRef
Metadata
Title
Functional study of DAND5 variant in patients with Congenital Heart Disease and laterality defects
Authors
Fernando Cristo
José M. Inácio
Salomé de Almeida
Patrícia Mendes
Duarte Saraiva Martins
José Maio
Rui Anjos
José A. Belo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2017
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-017-0444-1

Other articles of this Issue 1/2017

BMC Medical Genetics 1/2017 Go to the issue