Skip to main content
Top
Published in: BMC Medical Imaging 1/2020

Open Access 01-12-2020 | Research article

CNN-based survival model for pancreatic ductal adenocarcinoma in medical imaging

Authors: Yucheng Zhang, Edrise M. Lobo-Mueller, Paul Karanicolas, Steven Gallinger, Masoom A. Haider, Farzad Khalvati

Published in: BMC Medical Imaging | Issue 1/2020

Login to get access

Abstract

Background

Cox proportional hazard model (CPH) is commonly used in clinical research for survival analysis. In quantitative medical imaging (radiomics) studies, CPH plays an important role in feature reduction and modeling. However, the underlying linear assumption of CPH model limits the prognostic performance. In this work, using transfer learning, a convolutional neural network (CNN) based survival model was built and tested on preoperative CT images of resectable Pancreatic Ductal Adenocarcinoma (PDAC) patients.

Results

The proposed CNN-based survival model outperformed the traditional CPH-based radiomics approach in terms of concordance index and index of prediction accuracy, providing a better fit for patients’ survival patterns.

Conclusions

The proposed CNN-based survival model outperforms CPH-based radiomics pipeline in PDAC prognosis. This approach offers a better fit for survival patterns based on CT images and overcomes the limitations of conventional survival models.
Literature
1.
go back to reference Khalvati F, Zhang Y, Wong A, Haider MA. Radiomics. In: Encyclopedia of Biomedical Engineering, vol. 2; 2019. p. 597–603.CrossRef Khalvati F, Zhang Y, Wong A, Haider MA. Radiomics. In: Encyclopedia of Biomedical Engineering, vol. 2; 2019. p. 597–603.CrossRef
2.
go back to reference Van Griethuysen JJM, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77:e104–7.CrossRef Van Griethuysen JJM, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77:e104–7.CrossRef
4.
go back to reference George B, Seals S, Aban I. Survival analysis and regression models. J Nucl Cardiol. 2014;21:686–94.CrossRef George B, Seals S, Aban I. Survival analysis and regression models. J Nucl Cardiol. 2014;21:686–94.CrossRef
5.
go back to reference Keek SA, Leijenaar RT, Jochems A, Woodruff HC. A review on radiomics and the future of theranostics for patient selection in precision medicine. Br J Radiol. 2018;91:20170926.CrossRef Keek SA, Leijenaar RT, Jochems A, Woodruff HC. A review on radiomics and the future of theranostics for patient selection in precision medicine. Br J Radiol. 2018;91:20170926.CrossRef
7.
go back to reference Aerts HJ, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.CrossRef Aerts HJ, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.CrossRef
8.
go back to reference Aerts HJ, The Potential of Radiomic-based Phenotyping in precision medicine. JAMA Oncol. 2016;2:1636.CrossRef Aerts HJ, The Potential of Radiomic-based Phenotyping in precision medicine. JAMA Oncol. 2016;2:1636.CrossRef
9.
11.
go back to reference Gensheimer MF, Narasimhan B. A Scalable Discrete-Time Survival Model for Neural Networks. PeerJ. 2019;7:e6257.CrossRef Gensheimer MF, Narasimhan B. A Scalable Discrete-Time Survival Model for Neural Networks. PeerJ. 2019;7:e6257.CrossRef
12.
go back to reference Ching T, Zhu X, Garmire LX. Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data. PLoS Comput Biol. 2018;14:e1006076.CrossRef Ching T, Zhu X, Garmire LX. Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data. PLoS Comput Biol. 2018;14:e1006076.CrossRef
13.
go back to reference Cox D. R. Regression models and life-tables. J Royal Stat Soc. 1972;34:187–220. Cox D. R. Regression models and life-tables. J Royal Stat Soc. 1972;34:187–220.
17.
go back to reference Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH. Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge. In: International MICCAI Brainlesion Workshop. Cham: Springer; 2017. p. 287–97. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH. Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge. In: International MICCAI Brainlesion Workshop. Cham: Springer; 2017. p. 287–97.
18.
go back to reference Hawkins S, et al. Predicting malignant nodules from screening CT scans. J Thorac Oncol. 2016;11:2120–8.CrossRef Hawkins S, et al. Predicting malignant nodules from screening CT scans. J Thorac Oncol. 2016;11:2120–8.CrossRef
19.
go back to reference Chakraborty J, et al. CT radiomics to predict high-risk intraductal papillary mucinous neoplasms of the pancreas. Med Phys. 2018;45:5019–29.CrossRef Chakraborty J, et al. CT radiomics to predict high-risk intraductal papillary mucinous neoplasms of the pancreas. Med Phys. 2018;45:5019–29.CrossRef
20.
go back to reference Cozzi L, et al. Computed tomography based radiomic signature as predictive of survival and local control after stereotactic body radiation therapy in pancreatic carcinoma. PLoS One. 2019;14:e0210758.CrossRef Cozzi L, et al. Computed tomography based radiomic signature as predictive of survival and local control after stereotactic body radiation therapy in pancreatic carcinoma. PLoS One. 2019;14:e0210758.CrossRef
21.
go back to reference Lao J, et al. A deep learning-based Radiomics model for prediction of survival in Glioblastoma Multiforme. Sci Rep. 2017;7:10353.CrossRef Lao J, et al. A deep learning-based Radiomics model for prediction of survival in Glioblastoma Multiforme. Sci Rep. 2017;7:10353.CrossRef
22.
go back to reference Breiman L. Random Forests; 2001. p. 1–33. Breiman L. Random Forests; 2001. p. 1–33.
23.
go back to reference Hearst MA, Dumais ST, Osman E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Syst. 1998;13:18–28.CrossRef Hearst MA, Dumais ST, Osman E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Syst. 1998;13:18–28.CrossRef
25.
go back to reference Foucher ED, et al. Pancreatic ductal adenocarcinoma: a strong imbalance of good and bad immunological cops in the tumor microenvironment. Front Immunol. 2018;9:1044.CrossRef Foucher ED, et al. Pancreatic ductal adenocarcinoma: a strong imbalance of good and bad immunological cops in the tumor microenvironment. Front Immunol. 2018;9:1044.CrossRef
27.
go back to reference Mariani L, et al. Prognostic factors for metachronous contralateral breast cancer: a comparison of the linear Cox regression model and its artificial neural network extension. Breast Cancer Res Treat. 1997;44:167–78.CrossRef Mariani L, et al. Prognostic factors for metachronous contralateral breast cancer: a comparison of the linear Cox regression model and its artificial neural network extension. Breast Cancer Res Treat. 1997;44:167–78.CrossRef
28.
go back to reference Katzman JL, et al. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol. 2018;18:24.CrossRef Katzman JL, et al. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol. 2018;18:24.CrossRef
29.
go back to reference Xiang A, Lapuerta P, Ryutov A, Buckley J, Azen S. Comparison of the performance of neural network methods and Cox regression for censored survival data. Comput Stat Data Anal. 2000;34:243–57.CrossRef Xiang A, Lapuerta P, Ryutov A, Buckley J, Azen S. Comparison of the performance of neural network methods and Cox regression for censored survival data. Comput Stat Data Anal. 2000;34:243–57.CrossRef
30.
31.
go back to reference Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: InAdvances in neural information processing systems; 2012. p. 1097–105. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: InAdvances in neural information processing systems; 2012. p. 1097–105.
32.
go back to reference Shin H-C, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, Dataset Characteristics and Transfer Learning. IEEE Trans Med Imaging. 2016;35:1285–98.CrossRef Shin H-C, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, Dataset Characteristics and Transfer Learning. IEEE Trans Med Imaging. 2016;35:1285–98.CrossRef
33.
go back to reference Tajbakhsh N, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2017;35:1299–312.CrossRef Tajbakhsh N, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2017;35:1299–312.CrossRef
34.
go back to reference Yasaka K, Akai H, Abe O, Kiryu S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology. 2018;286:887–96.CrossRef Yasaka K, Akai H, Abe O, Kiryu S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology. 2018;286:887–96.CrossRef
35.
go back to reference Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9:611–29.CrossRef Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9:611–29.CrossRef
36.
go back to reference Raykar VC, Steck H, Krishnapuram B, Dehing-Oberije C, Lambin P. On Ranking in Survival Analysis: Bounds on the Concordance Index. In: InAdvances in neural information processing systems; 2008. p. 1209–16. Raykar VC, Steck H, Krishnapuram B, Dehing-Oberije C, Lambin P. On Ranking in Survival Analysis: Bounds on the Concordance Index. In: InAdvances in neural information processing systems; 2008. p. 1209–16.
38.
go back to reference Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B. 1996;58:267–88. Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B. 1996;58:267–88.
39.
go back to reference Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. Springer, New York; 2000. ISBN 0-387-98784–3. Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. Springer, New York; 2000. ISBN 0-387-98784–3.
Metadata
Title
CNN-based survival model for pancreatic ductal adenocarcinoma in medical imaging
Authors
Yucheng Zhang
Edrise M. Lobo-Mueller
Paul Karanicolas
Steven Gallinger
Masoom A. Haider
Farzad Khalvati
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2020
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-020-0418-1

Other articles of this Issue 1/2020

BMC Medical Imaging 1/2020 Go to the issue