Skip to main content
Top
Published in: BMC Medical Imaging 1/2018

Open Access 01-12-2018 | Research article

Automatic brain tissue segmentation based on graph filter

Authors: Youyong Kong, Xiaopeng Chen, Jiasong Wu, Pinzheng Zhang, Yang Chen, Huazhong Shu

Published in: BMC Medical Imaging | Issue 1/2018

Login to get access

Abstract

Background

Accurate segmentation of brain tissues from magnetic resonance imaging (MRI) is of significant importance in clinical applications and neuroscience research. Accurate segmentation is challenging due to the tissue heterogeneity, which is caused by noise, bias filed and partial volume effects.

Methods

To overcome this limitation, this paper presents a novel algorithm for brain tissue segmentation based on supervoxel and graph filter. Firstly, an effective supervoxel method is employed to generate effective supervoxels for the 3D MRI image. Secondly, the supervoxels are classified into different types of tissues based on filtering of graph signals.

Results

The performance is evaluated on the BrainWeb 18 dataset and the Internet Brain Segmentation Repository (IBSR) 18 dataset. The proposed method achieves mean dice similarity coefficient (DSC) of 0.94, 0.92 and 0.90 for the segmentation of white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) for BrainWeb 18 dataset, and mean DSC of 0.85, 0.87 and 0.57 for the segmentation of WM, GM and CSF for IBSR18 dataset.

Conclusions

The proposed approach can well discriminate different types of brain tissues from the brain MRI image, which has high potential to be applied for clinical applications.
Literature
1.
go back to reference Yang G, Nawaz T, Barrick TR, Howe FA, Slabaugh G. Discrete wavelet transform-based whole-spectral and subspectral analysis for improved brain tumor clustering using single voxel MR spectroscopy. IEEE Trans Biomed Eng. 2015;62(12):2860–6.CrossRefPubMed Yang G, Nawaz T, Barrick TR, Howe FA, Slabaugh G. Discrete wavelet transform-based whole-spectral and subspectral analysis for improved brain tumor clustering using single voxel MR spectroscopy. IEEE Trans Biomed Eng. 2015;62(12):2860–6.CrossRefPubMed
2.
go back to reference Zheng H, Qu XB, Bai ZJ, Liu YS, Guo D, Dong JY, et al. Multi-contrast brain magnetic resonance image super-resolution using the local weight similarity. BMC Med Imaging. 2017;17(6):1–13. Zheng H, Qu XB, Bai ZJ, Liu YS, Guo D, Dong JY, et al. Multi-contrast brain magnetic resonance image super-resolution using the local weight similarity. BMC Med Imaging. 2017;17(6):1–13.
3.
go back to reference Wang SH, Zhang Y, Zhan TM, Phillips P, Zhang YD, Liu G, et al. Pathological brain detection by artificial intelligence in magnetic resonance imaging scanning. Prog Electromagn Res. 2016;156:105–33.CrossRef Wang SH, Zhang Y, Zhan TM, Phillips P, Zhang YD, Liu G, et al. Pathological brain detection by artificial intelligence in magnetic resonance imaging scanning. Prog Electromagn Res. 2016;156:105–33.CrossRef
4.
go back to reference Sauwen N, Acou M, Sima DM, Veraart J, Maes F, Himmelreich U, et al. Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization. BMC Med Imaging. 2017;17(29):1–14. Sauwen N, Acou M, Sima DM, Veraart J, Maes F, Himmelreich U, et al. Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization. BMC Med Imaging. 2017;17(29):1–14.
5.
go back to reference Kong Y, Shi L, Hui SC, Wang D, Deng M, Chu WC, et al. Variation in anisotropy and diffusivity along the medulla oblongata and the whole spinal cord in adolescent idiopathic scoliosis: a pilot study using diffusion tensor imaging. AJNR Am J Neuroradiol. 2014;35(8):1621–7.CrossRefPubMed Kong Y, Shi L, Hui SC, Wang D, Deng M, Chu WC, et al. Variation in anisotropy and diffusivity along the medulla oblongata and the whole spinal cord in adolescent idiopathic scoliosis: a pilot study using diffusion tensor imaging. AJNR Am J Neuroradiol. 2014;35(8):1621–7.CrossRefPubMed
6.
go back to reference Magnoni S, Mac Donald CL, Esparza TJ, Conte V, Sorrell J, Macri M, et al. Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI. Brain. 2015;138(Pt 8):2263–77.CrossRefPubMedPubMedCentral Magnoni S, Mac Donald CL, Esparza TJ, Conte V, Sorrell J, Macri M, et al. Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI. Brain. 2015;138(Pt 8):2263–77.CrossRefPubMedPubMedCentral
7.
go back to reference Deng Y, Ren ZQ, Kong YY, Bao F, Dai QH. A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans Fuzzy Syst. 2017;25(4):1006–12.CrossRef Deng Y, Ren ZQ, Kong YY, Bao F, Dai QH. A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans Fuzzy Syst. 2017;25(4):1006–12.CrossRef
8.
go back to reference Wang S, Phillips P, Yang J, Sun P, Zhang Y. Magnetic resonance brain classification by a novel binary particle swarm optimization with mutation and time-varying acceleration coefficients. Biomed Tech (Berl). 2016;61(4):431–41.CrossRef Wang S, Phillips P, Yang J, Sun P, Zhang Y. Magnetic resonance brain classification by a novel binary particle swarm optimization with mutation and time-varying acceleration coefficients. Biomed Tech (Berl). 2016;61(4):431–41.CrossRef
9.
go back to reference Wang S, Zhang Y, Liu G, Phillips P, Yuan TF. Detection of Alzheimer's disease by three-dimensional displacement field estimation in structural magnetic resonance imaging. J Alzheimers Dis. 2016;50(1):233–48.CrossRefPubMed Wang S, Zhang Y, Liu G, Phillips P, Yuan TF. Detection of Alzheimer's disease by three-dimensional displacement field estimation in structural magnetic resonance imaging. J Alzheimers Dis. 2016;50(1):233–48.CrossRefPubMed
10.
go back to reference Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process. 2011;20(7):2007–16.CrossRefPubMed Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process. 2011;20(7):2007–16.CrossRefPubMed
11.
go back to reference Greenspan H, Ruf A, Goldberger J. Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans Med Imaging. 2006;25(9):1233–45.CrossRefPubMed Greenspan H, Ruf A, Goldberger J. Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans Med Imaging. 2006;25(9):1233–45.CrossRefPubMed
13.
go back to reference Song Z, Tustison N, Avants B, Gee J. Adaptive graph cutrs with tissue priors for brain MRI segmentation. IEEE Intern Sympo Biomed Imaging. 2006:762–5. Song Z, Tustison N, Avants B, Gee J. Adaptive graph cutrs with tissue priors for brain MRI segmentation. IEEE Intern Sympo Biomed Imaging. 2006:762–5.
14.
go back to reference Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C. Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging. 2009;28(8):1266–77.CrossRefPubMed Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C. Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging. 2009;28(8):1266–77.CrossRefPubMed
15.
go back to reference Fan Y, Huchuan L, Ming-Hsuan Y. Robust superpixel tracking. IEEE Transact Image Process. 2014;23(4):1639–51.CrossRef Fan Y, Huchuan L, Ming-Hsuan Y. Robust superpixel tracking. IEEE Transact Image Process. 2014;23(4):1639–51.CrossRef
16.
go back to reference Deng Y, Bao F, Deng XS, Wang RP, Kong YY, Dai QH. Deep and structured robust information theoretic learning for image analysis. Ieee T Image Process. 2016;25(9):4209–21. Deng Y, Bao F, Deng XS, Wang RP, Kong YY, Dai QH. Deep and structured robust information theoretic learning for image analysis. Ieee T Image Process. 2016;25(9):4209–21.
17.
go back to reference Li ST, Lu T, Fang LY, Jia XP, Benediktsson JA. Probabilistic fusion of pixel-level and Superpixel-level hyperspectral image classification. Ieee T Geosci Remote. 2016;54(12):7416–30.CrossRef Li ST, Lu T, Fang LY, Jia XP, Benediktsson JA. Probabilistic fusion of pixel-level and Superpixel-level hyperspectral image classification. Ieee T Geosci Remote. 2016;54(12):7416–30.CrossRef
18.
go back to reference Mahapatra D, Schueffler P, Tielbeek J, Makanyanga J, Stoker J, Taylor S, et al. Automatic detection and segmentation of Crohn's disease tissues from abdominal MRI. IEEE Trans Med Imaging. 2013;32(12):2332-47. Mahapatra D, Schueffler P, Tielbeek J, Makanyanga J, Stoker J, Taylor S, et al. Automatic detection and segmentation of Crohn's disease tissues from abdominal MRI. IEEE Trans Med Imaging. 2013;32(12):2332-47.
19.
go back to reference Wu W, Chen AY, Zhao L, Corso JJ. Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. Int J Comput Assist Radiol Surg. 2014;9(2):241–53.CrossRefPubMed Wu W, Chen AY, Zhao L, Corso JJ. Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. Int J Comput Assist Radiol Surg. 2014;9(2):241–53.CrossRefPubMed
20.
go back to reference Kong Y, Deng Y, Dai Q. Discriminative clustering and feature selection for brain MRI segmentation. IEEE Signal Processing Letters. 2015;22(5):573–7.CrossRef Kong Y, Deng Y, Dai Q. Discriminative clustering and feature selection for brain MRI segmentation. IEEE Signal Processing Letters. 2015;22(5):573–7.CrossRef
21.
go back to reference Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, et al. Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J Comput Assist Radiol Surg. 2017;12(2):183–203.CrossRefPubMed Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, et al. Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J Comput Assist Radiol Surg. 2017;12(2):183–203.CrossRefPubMed
22.
go back to reference Amoroso N, Errico R, Bruno S, Chincarini A, Garuccio E, Sensi F, et al. Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool. Phys Med Biol. 2015;60(22):8851–67.CrossRefPubMed Amoroso N, Errico R, Bruno S, Chincarini A, Garuccio E, Sensi F, et al. Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool. Phys Med Biol. 2015;60(22):8851–67.CrossRefPubMed
23.
go back to reference Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C, Madsen SK, et al. Validation of a fully automated 3D hippocampal segmentation method using subjects with Alzheimer's disease mild cognitive impairment, and elderly controls. NeuroImage. 2008;43(1):59–68.CrossRefPubMedPubMedCentral Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C, Madsen SK, et al. Validation of a fully automated 3D hippocampal segmentation method using subjects with Alzheimer's disease mild cognitive impairment, and elderly controls. NeuroImage. 2008;43(1):59–68.CrossRefPubMedPubMedCentral
24.
go back to reference Kwan RK, Evans AC, Pike GB. MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging. 1999;18(11):1085–97.CrossRefPubMed Kwan RK, Evans AC, Pike GB. MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans Med Imaging. 1999;18(11):1085–97.CrossRefPubMed
25.
go back to reference Cocosco C, Kollokian V, Kwan R, Pike G, Evans A. Brainweb: online interface to a 3D MRI simulated brain database. NeuroImage. 1997;5:425. Cocosco C, Kollokian V, Kwan R, Pike G, Evans A. Brainweb: online interface to a 3D MRI simulated brain database. NeuroImage. 1997;5:425.
26.
go back to reference Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):888–905.CrossRef Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):888–905.CrossRef
27.
go back to reference Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell. 2002;24(5):603–19.CrossRef Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell. 2002;24(5):603–19.CrossRef
28.
go back to reference Lehmann F. Turbo segmentation of textured images. IEEE Trans Pattern Anal Mach Intell. 2011;33(1):16–29.CrossRefPubMed Lehmann F. Turbo segmentation of textured images. IEEE Trans Pattern Anal Mach Intell. 2011;33(1):16–29.CrossRefPubMed
29.
go back to reference Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC Superpixels compared to state-of-the-art Superpixel methods. IEEE Trans Pattern Anal Mach Intell. 2012;34(11):2274–82.CrossRefPubMed Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC Superpixels compared to state-of-the-art Superpixel methods. IEEE Trans Pattern Anal Mach Intell. 2012;34(11):2274–82.CrossRefPubMed
30.
go back to reference Heinrich MP, Simpson IJ, Papiez BW, Brady SM, Schnabel JA. Deformable image registration by combining uncertainty estimates from supervoxel belief propagation. Med Image Anal. 2016;27:57–71.CrossRefPubMed Heinrich MP, Simpson IJ, Papiez BW, Brady SM, Schnabel JA. Deformable image registration by combining uncertainty estimates from supervoxel belief propagation. Med Image Anal. 2016;27:57–71.CrossRefPubMed
31.
go back to reference Tian Z, Liu L, Zhang Z, Fei B. Superpixel-based segmentation for 3D prostate MR images. IEEE Trans Med Imaging. 2016;35(3):791–801.CrossRefPubMed Tian Z, Liu L, Zhang Z, Fei B. Superpixel-based segmentation for 3D prostate MR images. IEEE Trans Med Imaging. 2016;35(3):791–801.CrossRefPubMed
32.
go back to reference Verma N, Cowperthwaite MC, Markey MK. Superpixels in brain MR image analysis. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:1077-1080. Verma N, Cowperthwaite MC, Markey MK. Superpixels in brain MR image analysis. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:1077-1080.
33.
go back to reference Coupe P, Manjon JV, Gedamu E, Arnold D, Robles M, Collins DL. Robust Rician noise estimation for MR images. Med Image Anal. 2010;14(4):483–93.CrossRefPubMed Coupe P, Manjon JV, Gedamu E, Arnold D, Robles M, Collins DL. Robust Rician noise estimation for MR images. Med Image Anal. 2010;14(4):483–93.CrossRefPubMed
34.
go back to reference Holzer M, Rene D. Over-segmentation of 3D medical image volumes based on monogenic cues. Computer vision winter workshop. 2014. p. 35–42. Holzer M, Rene D. Over-segmentation of 3D medical image volumes based on monogenic cues. Computer vision winter workshop. 2014. p. 35–42.
35.
go back to reference Fu HZ, Cao XC, Tang D, Han YH, Xu D. Regularity preserved Superpixels and Supervoxels. IEEE Transact Multimedia. 2014;16(4):1165–75.CrossRef Fu HZ, Cao XC, Tang D, Han YH, Xu D. Regularity preserved Superpixels and Supervoxels. IEEE Transact Multimedia. 2014;16(4):1165–75.CrossRef
36.
go back to reference Chen Y, Shi LY, Feng QJ, Yang J, Shu HZ, Luo LM, et al. Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans Med Imaging. 2014;33(12):2271–92.CrossRefPubMed Chen Y, Shi LY, Feng QJ, Yang J, Shu HZ, Luo LM, et al. Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans Med Imaging. 2014;33(12):2271–92.CrossRefPubMed
37.
go back to reference Chen Y, Budde A, Li K, Li YS, Hsieh J, Chen GH. A platform-independent method to reduce CT truncation artifacts using discriminative dictionary representations. Med Phys. 2017;44(1):121–31.CrossRefPubMed Chen Y, Budde A, Li K, Li YS, Hsieh J, Chen GH. A platform-independent method to reduce CT truncation artifacts using discriminative dictionary representations. Med Phys. 2017;44(1):121–31.CrossRefPubMed
38.
go back to reference Sandryhaila A, Moura JMF. Discrete signal processing on graphs: graph filters. IEEE International Conference on Acoustics, Speech and Signal Processing. 2013. 6163–6. Sandryhaila A, Moura JMF. Discrete signal processing on graphs: graph filters. IEEE International Conference on Acoustics, Speech and Signal Processing. 2013. 6163–6.
39.
41.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. 2006;31(3):1116–28.CrossRefPubMed Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. 2006;31(3):1116–28.CrossRefPubMed
42.
43.
go back to reference Deng Y, Kong YY, Bao F, Dai QH. Sparse coding-inspired optimal trading system for HFT industry. Ieee T Ind Inform. 2015;11(2):467–75.CrossRef Deng Y, Kong YY, Bao F, Dai QH. Sparse coding-inspired optimal trading system for HFT industry. Ieee T Ind Inform. 2015;11(2):467–75.CrossRef
44.
go back to reference Chen Y, Zhang YD, Yang J, Cao Q, Yang GY, Chen J, et al. Curve-like structure extraction using minimal path propagation with backtracking. Ieee T Image Process. 2016;25(2):988–1003.CrossRef Chen Y, Zhang YD, Yang J, Cao Q, Yang GY, Chen J, et al. Curve-like structure extraction using minimal path propagation with backtracking. Ieee T Image Process. 2016;25(2):988–1003.CrossRef
Metadata
Title
Automatic brain tissue segmentation based on graph filter
Authors
Youyong Kong
Xiaopeng Chen
Jiasong Wu
Pinzheng Zhang
Yang Chen
Huazhong Shu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2018
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-018-0252-x

Other articles of this Issue 1/2018

BMC Medical Imaging 1/2018 Go to the issue