Skip to main content
Top
Published in: BMC Medical Imaging 1/2017

Open Access 01-12-2017 | Research Article

Estimation of myocardial deformation using correlation image velocimetry

Authors: Athira Jacob, Ganapathy Krishnamurthi, Manikandan Mathur

Published in: BMC Medical Imaging | Issue 1/2017

Login to get access

Abstract

Background

Tagged Magnetic Resonance (tMR) imaging is a powerful technique for determining cardiovascular abnormalities. One of the reasons for tMR not being used in routine clinical practice is the lack of easy-to-use tools for image analysis and strain mapping. In this paper, we introduce a novel interdisciplinary method based on correlation image velocimetry (CIV) to estimate cardiac deformation and strain maps from tMR images.

Methods

CIV, a cross-correlation based pattern matching algorithm, analyses a pair of images to obtain the displacement field at sub-pixel accuracy with any desired spatial resolution. This first time application of CIV to tMR image analysis is implemented using an existing open source Matlab-based software called UVMAT. The method, which requires two main input parameters namely correlation box size (C B ) and search box size (S B ), is first validated using a synthetic grid image with grid sizes representative of typical tMR images. Phantom and patient images obtained from a Medical Imaging grand challenge dataset (http://​stacom.​cardiacatlas.​org/​motion-tracking-challenge/​) were then analysed to obtain cardiac displacement fields and strain maps. The results were then compared with estimates from Harmonic Phase analysis (HARP) technique.

Results

For a known displacement field imposed on both the synthetic grid image and the phantom image, CIV is accurate for 3-pixel and larger displacements on a 512 × 512 image with (C B ,S B )=(25,55) pixels. Further validation of our method is achieved by showing that our estimated landmark positions on patient images fall within the inter-observer variability in the ground truth. The effectiveness of our approach to analyse patient images is then established by calculating dense displacement fields throughout a cardiac cycle, and were found to be physiologically consistent. Circumferential strains were estimated at the apical, mid and basal slices of the heart, and were shown to compare favorably with those of HARP over the entire cardiac cycle, except in a few (∼4) of the segments in the 17-segment AHA model. The radial strains, however, are underestimated by our method in most segments when compared with HARP.

Conclusions

In summary, we have demonstrated the capability of CIV to accurately and efficiently quantify cardiac deformation from tMR images. Furthermore, physiologically consistent displacement fields and circumferential strain curves in most regions of the heart indicate that our approach, upon automating some pre-processing steps and testing in clinical trials, can potentially be implemented in a clinical setting.
Appendix
Available only for authorised users
Literature
1.
go back to reference Folland E, Parisi A, Moynihan P, Jones DR, Feldman CL, Tow D. Assessment of left ventricular ejection fraction and volumes by real-time, two-dimensional echocardiography. a comparison of cineangiographic and radionuclide techniques. Circulation. 1979; 60(4):760–6.CrossRefPubMed Folland E, Parisi A, Moynihan P, Jones DR, Feldman CL, Tow D. Assessment of left ventricular ejection fraction and volumes by real-time, two-dimensional echocardiography. a comparison of cineangiographic and radionuclide techniques. Circulation. 1979; 60(4):760–6.CrossRefPubMed
3.
go back to reference Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol. 1987; 59(7):23–30.CrossRef Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol. 1987; 59(7):23–30.CrossRef
4.
go back to reference Schuijf JD, Shaw LJ, Wijns W, Lamb HJ, Poldermans D, de Roos A, van der Wall EE, Bax JJ. Cardiac imaging in coronary artery disease: differing modalities. Heart. 2005; 91(8):1110–1117.CrossRefPubMedPubMedCentral Schuijf JD, Shaw LJ, Wijns W, Lamb HJ, Poldermans D, de Roos A, van der Wall EE, Bax JJ. Cardiac imaging in coronary artery disease: differing modalities. Heart. 2005; 91(8):1110–1117.CrossRefPubMedPubMedCentral
5.
go back to reference Ohyama Y, Volpe GJ, Lima JA. Subclinical myocardial disease in heart failure detected by cmr. Curr Cardiovasc Imaging Rep. 2014; 7(6):1–10.CrossRef Ohyama Y, Volpe GJ, Lima JA. Subclinical myocardial disease in heart failure detected by cmr. Curr Cardiovasc Imaging Rep. 2014; 7(6):1–10.CrossRef
6.
go back to reference Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, Nesser HJ, Khandheria B, Narula J, Sengupta PP. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010; 23(4):351–69.CrossRefPubMed Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, Nesser HJ, Khandheria B, Narula J, Sengupta PP. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010; 23(4):351–69.CrossRefPubMed
7.
go back to reference Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JAC, Smiseth OA. Quantitative assessment of intrinsic regional myocardial deformation by doppler strain rate echocardiography in humans: Validation against three-dimensional tagged magnetic resonance imaging. Circulation. 2002; 106(1):50–6. doi:10.1161/01.CIR.0000019907.77526.75.CrossRefPubMed Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JAC, Smiseth OA. Quantitative assessment of intrinsic regional myocardial deformation by doppler strain rate echocardiography in humans: Validation against three-dimensional tagged magnetic resonance imaging. Circulation. 2002; 106(1):50–6. doi:10.​1161/​01.​CIR.​0000019907.​77526.​75.CrossRefPubMed
8.
go back to reference Aletras AH, Ding S, Balaban RS, Wen H. Dense: displacement encoding with stimulated echoes in cardiac functional mri. J Magn Reson. 1999; 137(1):247–52.CrossRefPubMedPubMedCentral Aletras AH, Ding S, Balaban RS, Wen H. Dense: displacement encoding with stimulated echoes in cardiac functional mri. J Magn Reson. 1999; 137(1):247–52.CrossRefPubMedPubMedCentral
9.
go back to reference Maret E, Todt T, Brudin L, Nylander E, Swahn E, Ohlsson JL, Engvall JE. Functional measurements based on feature tracking of cine magnetic resonance images identify left ventricular segments with myocardial scar. Cardiovasc Ultrasound. 2009; 7(1):1.CrossRef Maret E, Todt T, Brudin L, Nylander E, Swahn E, Ohlsson JL, Engvall JE. Functional measurements based on feature tracking of cine magnetic resonance images identify left ventricular segments with myocardial scar. Cardiovasc Ultrasound. 2009; 7(1):1.CrossRef
10.
go back to reference Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R, Wansapura J, Klimeczek P, Al-Khalidi HR, Chung ES, et al.Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC: Cardiovasc Imaging. 2010; 3(2):144–51. Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R, Wansapura J, Klimeczek P, Al-Khalidi HR, Chung ES, et al.Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC: Cardiovasc Imaging. 2010; 3(2):144–51.
11.
go back to reference Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging with mr imaging–a method for noninvasive assessment of myocardial motion. Radiology. 1988; 169(1):59–63. PMID: 3420283.CrossRefPubMed Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging with mr imaging–a method for noninvasive assessment of myocardial motion. Radiology. 1988; 169(1):59–63. PMID: 3420283.CrossRefPubMed
14.
go back to reference Clark NR, Reichek N, Bergey P, Hoffman EA, Brownson D, Palmon L, Axel L. Circumferential myocardial shortening in the normal human left ventricle. assessment by magnetic resonance imaging using spatial modulation of magnetization. Circulation. 1991; 84(1):67–74. doi:10.1161/01.CIR.84.1.67.CrossRefPubMed Clark NR, Reichek N, Bergey P, Hoffman EA, Brownson D, Palmon L, Axel L. Circumferential myocardial shortening in the normal human left ventricle. assessment by magnetic resonance imaging using spatial modulation of magnetization. Circulation. 1991; 84(1):67–74. doi:10.​1161/​01.​CIR.​84.​1.​67.CrossRefPubMed
16.
go back to reference Lugo-Olivieri C, Moore C, Guttman M, Lima J, McVeigh E, Zerhouni E. The effects of ischemia on the temporal evolution of radial myocardial deformation in humans. Radiology. 1994; 193(P):161. Lugo-Olivieri C, Moore C, Guttman M, Lima J, McVeigh E, Zerhouni E. The effects of ischemia on the temporal evolution of radial myocardial deformation in humans. Radiology. 1994; 193(P):161.
18.
go back to reference Lima JA, Ferrari VA, Reichek N, Kramer CM, Palmon L, Llaneras MR, Tallant B, Young AA, Axel L. Segmental motion and deformation of transmurally infarcted myocardium in acute postinfarct period. Am J Physiol Heart Circ Physiol. 1995; 268(3):1304–1312. Lima JA, Ferrari VA, Reichek N, Kramer CM, Palmon L, Llaneras MR, Tallant B, Young AA, Axel L. Segmental motion and deformation of transmurally infarcted myocardium in acute postinfarct period. Am J Physiol Heart Circ Physiol. 1995; 268(3):1304–1312.
19.
go back to reference Croisille P, Judd RM, Lima JAC, Moore C, Arai M, Lugoolivieri C, Zerhouni EA. Combined dobutamine stress 3d tagged and contrast-enhanced mri differentiate viable from nonviable myocardium after acute infarction and reperfusion. In: Circulation (Vol. 92, No. 8). Dallas: Amer Heart Assoc.: 1995. p. 2426–2426. Croisille P, Judd RM, Lima JAC, Moore C, Arai M, Lugoolivieri C, Zerhouni EA. Combined dobutamine stress 3d tagged and contrast-enhanced mri differentiate viable from nonviable myocardium after acute infarction and reperfusion. In: Circulation (Vol. 92, No. 8). Dallas: Amer Heart Assoc.: 1995. p. 2426–2426.
20.
go back to reference Osman NF, Kerwin WS, Mcveigh ER, Prince JL. Cardiac motion tracking using cine harmonic phase (harp) magnetic resonance imaging. Mag. Reson. Med. 1999; 42:1048–1060.CrossRef Osman NF, Kerwin WS, Mcveigh ER, Prince JL. Cardiac motion tracking using cine harmonic phase (harp) magnetic resonance imaging. Mag. Reson. Med. 1999; 42:1048–1060.CrossRef
21.
go back to reference Prasad AK. Particle image velocimetry. Curr Sci. 2000; 79(1):51–60. Prasad AK. Particle image velocimetry. Curr Sci. 2000; 79(1):51–60.
23.
go back to reference Tobon-Gomez C, Craene MD, McLeod K, Tautz L, Shi W, Hennemuth A, Prakosa A, Wang H, Carr-White G, Kapetanakis S, Lutz A, Rasche V, Schaeffter T, Butakoff C, Friman O, Mansi T, Sermesant M, Zhuang X, Ourselin S, Peitgen HO, Pennec X, Razavi R, Rueckert D, Frangi AF, Rhode KS. Benchmarking framework for myocardial tracking and deformation algorithms: An open access database. Med Image Anal. 2013; 17(6):632–48.CrossRefPubMed Tobon-Gomez C, Craene MD, McLeod K, Tautz L, Shi W, Hennemuth A, Prakosa A, Wang H, Carr-White G, Kapetanakis S, Lutz A, Rasche V, Schaeffter T, Butakoff C, Friman O, Mansi T, Sermesant M, Zhuang X, Ourselin S, Peitgen HO, Pennec X, Razavi R, Rueckert D, Frangi AF, Rhode KS. Benchmarking framework for myocardial tracking and deformation algorithms: An open access database. Med Image Anal. 2013; 17(6):632–48.CrossRefPubMed
24.
go back to reference Rutz A, Ryf S, Plein S, Boesiger P, Kozerke S. Accelerated whole-heart 3d cspamm for myocardial motion quantification. Magn Reson Med. 2008; 59(4):755–63.CrossRefPubMed Rutz A, Ryf S, Plein S, Boesiger P, Kozerke S. Accelerated whole-heart 3d cspamm for myocardial motion quantification. Magn Reson Med. 2008; 59(4):755–63.CrossRefPubMed
26.
go back to reference McLeod K, Prakosa A, Mansi T, Sermesant M, Pennec X. An incompressible log-domain demons algorithm for tracking heart tissue. In: International Workshop on Statistical Atlases and Computational Models of the Heart. Berlin: Springer: 2011. p. 55–67. McLeod K, Prakosa A, Mansi T, Sermesant M, Pennec X. An incompressible log-domain demons algorithm for tracking heart tissue. In: International Workshop on Statistical Atlases and Computational Models of the Heart. Berlin: Springer: 2011. p. 55–67.
27.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS, et al.Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association. Circulation. 2002; 105(4):539–42.CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS, et al.Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association. Circulation. 2002; 105(4):539–42.CrossRefPubMed
28.
go back to reference Jacob AJ, Alex V, Krishnamurthi G. Segmentation and tracking of myocardial boundaries using dynamic programming. In: International Workshop on Statistical Atlases and Computational Models of the Heart. Cham: Springer: 2016. p. 118–26. Jacob AJ, Alex V, Krishnamurthi G. Segmentation and tracking of myocardial boundaries using dynamic programming. In: International Workshop on Statistical Atlases and Computational Models of the Heart. Cham: Springer: 2016. p. 118–26.
Metadata
Title
Estimation of myocardial deformation using correlation image velocimetry
Authors
Athira Jacob
Ganapathy Krishnamurthi
Manikandan Mathur
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2017
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-017-0195-7

Other articles of this Issue 1/2017

BMC Medical Imaging 1/2017 Go to the issue