Skip to main content
Top
Published in: BMC Medical Imaging 1/2017

Open Access 01-12-2017 | Research Article

Dimensionality reduction-based fusion approaches for imaging and non-imaging biomedical data: concepts, workflow, and use-cases

Authors: Satish E. Viswanath, Pallavi Tiwari, George Lee, Anant Madabhushi, for the Alzheimer’s Disease Neuroimaging Initiative

Published in: BMC Medical Imaging | Issue 1/2017

Login to get access

Abstract

Background

With a wide array of multi-modal, multi-protocol, and multi-scale biomedical data being routinely acquired for disease characterization, there is a pressing need for quantitative tools to combine these varied channels of information. The goal of these integrated predictors is to combine these varied sources of information, while improving on the predictive ability of any individual modality. A number of application-specific data fusion methods have been previously proposed in the literature which have attempted to reconcile the differences in dimensionalities and length scales across different modalities. Our objective in this paper was to help identify metholodological choices that need to be made in order to build a data fusion technique, as it is not always clear which strategy is optimal for a particular problem. As a comprehensive review of all possible data fusion methods was outside the scope of this paper, we have focused on fusion approaches that employ dimensionality reduction (DR).

Methods

In this work, we quantitatively evaluate 4 non-overlapping existing instantiations of DR-based data fusion, within 3 different biomedical applications comprising over 100 studies. These instantiations utilized different knowledge representation and knowledge fusion methods, allowing us to examine the interplay of these modules in the context of data fusion. The use cases considered in this work involve the integration of (a) radiomics features from T2w MRI with peak area features from MR spectroscopy for identification of prostate cancer in vivo, (b) histomorphometric features (quantitative features extracted from histopathology) with protein mass spectrometry features for predicting 5 year biochemical recurrence in prostate cancer patients, and (c) volumetric measurements on T1w MRI with protein expression features to discriminate between patients with and without Alzheimers’ Disease.

Results and conclusions

Our preliminary results in these specific use cases indicated that the use of kernel representations in conjunction with DR-based fusion may be most effective, as a weighted multi-kernel-based DR approach resulted in the highest area under the ROC curve of over 0.8. By contrast non-optimized DR-based representation and fusion methods yielded the worst predictive performance across all 3 applications. Our results suggest that when the individual modalities demonstrate relatively poor discriminability, many of the data fusion methods may not yield accurate, discriminatory representations either. In summary, to outperform the predictive ability of individual modalities, methodological choices for data fusion must explicitly account for the sparsity of and noise in the feature space.
Literature
1.
go back to reference Madabhushi A, Agner S, Basavanhally A, Doyle S, Lee G. Computer-aided prognosis: Predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data. Comput Med Imaging Graph. 2011; 35:506–14.PubMedCrossRef Madabhushi A, Agner S, Basavanhally A, Doyle S, Lee G. Computer-aided prognosis: Predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data. Comput Med Imaging Graph. 2011; 35:506–14.PubMedCrossRef
2.
go back to reference Verma R, Zacharaki E, Ou Y, Cai H, Chawla S, Lee S, Melhem E, Wolf R, Davatzikos C. Multiparametric Tissue Characterization of Brain Neoplasms and Their Recurrence Using Pattern Classification of MR Images. Acad Radiol. 2008; 15(8):966–77.PubMedPubMedCentralCrossRef Verma R, Zacharaki E, Ou Y, Cai H, Chawla S, Lee S, Melhem E, Wolf R, Davatzikos C. Multiparametric Tissue Characterization of Brain Neoplasms and Their Recurrence Using Pattern Classification of MR Images. Acad Radiol. 2008; 15(8):966–77.PubMedPubMedCentralCrossRef
3.
go back to reference de Tayrac M, Le S, Aubry M, Mosser J, Husson F. Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: Multiple Factor Analysis approach. BMC Genomics. 2009; 10:32.PubMedPubMedCentralCrossRef de Tayrac M, Le S, Aubry M, Mosser J, Husson F. Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: Multiple Factor Analysis approach. BMC Genomics. 2009; 10:32.PubMedPubMedCentralCrossRef
4.
go back to reference Lee G, Doyle S, Monaco J, Madabhushi A, Feldman MD, Master SR, Tomaszewski JE. A knowledge representation framework for integration, classificationof multi-scale imaging and non-imaging data: Preliminary results in predicting prostate cancer recurrence by fusing mass spectrometry and histology. In: ISBI: 2009. p. 77–80. Lee G, Doyle S, Monaco J, Madabhushi A, Feldman MD, Master SR, Tomaszewski JE. A knowledge representation framework for integration, classificationof multi-scale imaging and non-imaging data: Preliminary results in predicting prostate cancer recurrence by fusing mass spectrometry and histology. In: ISBI: 2009. p. 77–80.
5.
go back to reference Viswanath S, Madabhushi A. Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data. BMC Bioinformatics. 2012; 13(1):26.PubMedPubMedCentralCrossRef Viswanath S, Madabhushi A. Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data. BMC Bioinformatics. 2012; 13(1):26.PubMedPubMedCentralCrossRef
6.
go back to reference Golugula A, Lee G, Master SR, Feldman MD, Tomaszewski JE, Speicher DW, Madabhushi A. Supervised regularized canonical correlation analysis: integrating histologic and proteomic measurements for predicting biochemical recurrence following prostate surgery. BMC Bioinformatics. 2011; 12:483.PubMedPubMedCentralCrossRef Golugula A, Lee G, Master SR, Feldman MD, Tomaszewski JE, Speicher DW, Madabhushi A. Supervised regularized canonical correlation analysis: integrating histologic and proteomic measurements for predicting biochemical recurrence following prostate surgery. BMC Bioinformatics. 2011; 12:483.PubMedPubMedCentralCrossRef
7.
go back to reference Wolz R, Aljabar P, Hajnal JV, Lotjonen J, Rueckert D. Nonlinear dimensionality reduction combining MR imaging with non-imaging information. Med Image Anal. 2012; 16(4):819–30.PubMedCrossRef Wolz R, Aljabar P, Hajnal JV, Lotjonen J, Rueckert D. Nonlinear dimensionality reduction combining MR imaging with non-imaging information. Med Image Anal. 2012; 16(4):819–30.PubMedCrossRef
8.
go back to reference Tiwari P, Kurhanewicz J, Madabhushi A. Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS. Med Image Anal. 2013; 17(2):219–35.PubMedCrossRef Tiwari P, Kurhanewicz J, Madabhushi A. Multi-kernel graph embedding for detection, Gleason grading of prostate cancer via MRI/MRS. Med Image Anal. 2013; 17(2):219–35.PubMedCrossRef
9.
go back to reference Lanckriet GR, et al. Kernel-based data fusion and its application to protein function prediction in yeast. In: Pac Symp Biocomput: 2004. p. 300–11. Lanckriet GR, et al. Kernel-based data fusion and its application to protein function prediction in yeast. In: Pac Symp Biocomput: 2004. p. 300–11.
10.
11.
go back to reference Lee G, Singanamalli A, Wang H, Feldman MD, Master SR, Shih NNC, Spangler E, Rebbeck T, Tomaszewski JE, Madabhushi A. Supervised multi-view canonical correlation analysis (smvcca): integrating histologic and proteomic features for predicting recurrent prostate cancer. IEEE Trans Med Imaging. 2015; 34(1):284–97. doi:10.1109/TMI.2014.2355175.PubMedCrossRef Lee G, Singanamalli A, Wang H, Feldman MD, Master SR, Shih NNC, Spangler E, Rebbeck T, Tomaszewski JE, Madabhushi A. Supervised multi-view canonical correlation analysis (smvcca): integrating histologic and proteomic features for predicting recurrent prostate cancer. IEEE Trans Med Imaging. 2015; 34(1):284–97. doi:10.​1109/​TMI.​2014.​2355175.PubMedCrossRef
12.
go back to reference Wang H, Singanamalli A, Ginsburg S, Madabhushi A. Selecting features with group-sparse nonnegative supervised canonical correlation analysis: multimodal prostate cancer prognosis. In: Med Image Comput Comput Assist Interv. vol. 17(3): 2014. p. 385–92. Wang H, Singanamalli A, Ginsburg S, Madabhushi A. Selecting features with group-sparse nonnegative supervised canonical correlation analysis: multimodal prostate cancer prognosis. In: Med Image Comput Comput Assist Interv. vol. 17(3): 2014. p. 385–92.
13.
go back to reference Gray KR, Aljabar P, Heckemann RA, Hammers A, Rueckert D. Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. NeuroImage. 2013; 65(0):167–75.PubMedCrossRef Gray KR, Aljabar P, Heckemann RA, Hammers A, Rueckert D. Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. NeuroImage. 2013; 65(0):167–75.PubMedCrossRef
14.
go back to reference McFee B, Galleguillos C, Lanckriet G. Contextual object localization with multiple kernel nearest neighbor. IEEE Trans Image Process. 2011; 20(2):570–85.PubMedCrossRef McFee B, Galleguillos C, Lanckriet G. Contextual object localization with multiple kernel nearest neighbor. IEEE Trans Image Process. 2011; 20(2):570–85.PubMedCrossRef
15.
go back to reference Yan S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. Pattern Anal Mach Intell IEEE Trans. 2007; 29(1):40–51.CrossRef Yan S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. Pattern Anal Mach Intell IEEE Trans. 2007; 29(1):40–51.CrossRef
16.
go back to reference Scholkopf B, Smola AJ. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press; 2001. Scholkopf B, Smola AJ. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press; 2001.
18.
go back to reference Rohlfing T, Pfefferbaum A, Sullivan EV, Maurer CR. Information fusion in biomedical image analysis: Combination of data vs. combination of interpretations. In: Information Processing in Medical Imaging: 2005. p. 150–61. Rohlfing T, Pfefferbaum A, Sullivan EV, Maurer CR. Information fusion in biomedical image analysis: Combination of data vs. combination of interpretations. In: Information Processing in Medical Imaging: 2005. p. 150–61.
19.
go back to reference Jesneck J, Nolte L, Baker J, Floyd C, Lo J. Optimized approach to decision fusion of heterogeneous data for breast cancer diagnosis. Med Phys. 2006; 33(8):2945–54.PubMedPubMedCentralCrossRef Jesneck J, Nolte L, Baker J, Floyd C, Lo J. Optimized approach to decision fusion of heterogeneous data for breast cancer diagnosis. Med Phys. 2006; 33(8):2945–54.PubMedPubMedCentralCrossRef
20.
go back to reference Dai Z, Yan C, Wang Z, Wang J, Xia M, Li K, He Y. Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). NeuroImage. 2012; 59(3):2187–95.PubMedCrossRef Dai Z, Yan C, Wang Z, Wang J, Xia M, Li K, He Y. Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). NeuroImage. 2012; 59(3):2187–95.PubMedCrossRef
21.
go back to reference Lenkinski R, Bloch B, Liu F, Frangioni J, Perner S, Rubin M, Genega E, Rofsky N, Gaston S. An illustration of the potential for mapping MRI/MRS parameters withgenetic over-expression profiles in human prostate cancer. Magn Reson Mater Phy. 2008; 21(6):411–21.CrossRef Lenkinski R, Bloch B, Liu F, Frangioni J, Perner S, Rubin M, Genega E, Rofsky N, Gaston S. An illustration of the potential for mapping MRI/MRS parameters withgenetic over-expression profiles in human prostate cancer. Magn Reson Mater Phy. 2008; 21(6):411–21.CrossRef
22.
go back to reference Raza M, Gondal I, Green D, Coppel RL. Fusion of FNA-cytology and Gene-expression Data Using Dempster-Shafer Theory of Evidence to Predict Breast Cancer Tumors. Bioinformation. 2006; 1(5):170–5.PubMedPubMedCentralCrossRef Raza M, Gondal I, Green D, Coppel RL. Fusion of FNA-cytology and Gene-expression Data Using Dempster-Shafer Theory of Evidence to Predict Breast Cancer Tumors. Bioinformation. 2006; 1(5):170–5.PubMedPubMedCentralCrossRef
23.
go back to reference Yang Z, Tang N, Zhang X, Lin H, Li Y, Yang Z. Multiple kernel learning in protein-protein interaction extraction from biomedical literature. Artif Intell Med. 2011; 51(3):163–73.PubMedCrossRef Yang Z, Tang N, Zhang X, Lin H, Li Y, Yang Z. Multiple kernel learning in protein-protein interaction extraction from biomedical literature. Artif Intell Med. 2011; 51(3):163–73.PubMedCrossRef
24.
go back to reference Hinrichs C, Singh V, Xu G, Johnson SC. Predictive markers for AD in a multi-modality framework: an analysisof MCI progression in the ADNI population. Neuroimage. 2011; 55(2):574–89.PubMedCrossRef Hinrichs C, Singh V, Xu G, Johnson SC. Predictive markers for AD in a multi-modality framework: an analysisof MCI progression in the ADNI population. Neuroimage. 2011; 55(2):574–89.PubMedCrossRef
25.
go back to reference Shahbazian E, Gagnon L, Duquet JR, Macieszczak M, Valin P. Fusion of imaging and nonimaging data for surveillance aircraft. In: Sensor Fusion: Architectures, Algorithms, and Applications: 1997. p. 179–89. Shahbazian E, Gagnon L, Duquet JR, Macieszczak M, Valin P. Fusion of imaging and nonimaging data for surveillance aircraft. In: Sensor Fusion: Architectures, Algorithms, and Applications: 1997. p. 179–89.
26.
go back to reference Zhuang J, Wang J, Hoi SCH, Lan X. Unsupervised Multiple Kernel Learning. JMLR: Workshop Conf Proc: Asian Conf Mach Learn. 2011; 20:129–44. Zhuang J, Wang J, Hoi SCH, Lan X. Unsupervised Multiple Kernel Learning. JMLR: Workshop Conf Proc: Asian Conf Mach Learn. 2011; 20:129–44.
27.
go back to reference Shi J, Malik J. Normalized cuts and image segmentation. Pattern Anal Mach Intell IEEE Trans. 2000; 22(8):888–905. 0162-8828.CrossRef Shi J, Malik J. Normalized cuts and image segmentation. Pattern Anal Mach Intell IEEE Trans. 2000; 22(8):888–905. 0162-8828.CrossRef
28.
go back to reference Hotelling H. Relations between two sets of variates. Biometrika. 1936; 28(3/4):321–77.CrossRef Hotelling H. Relations between two sets of variates. Biometrika. 1936; 28(3/4):321–77.CrossRef
29.
go back to reference Jolliffe IT. Principal Component Analysis, 2nd edn. Springer Series in Statistics. Berlin, New York: Springer; 2002. Jolliffe IT. Principal Component Analysis, 2nd edn. Springer Series in Statistics. Berlin, New York: Springer; 2002.
30.
go back to reference Lee G, C R, A M. Investigating the Efficacy of Nonlinear Dimensionality Reduction Schemes in Classifying Gene and Protein Expression Studies. IEEE/ACM Trans Comp Biol Bioinf. 2008; 5(3):368–84.CrossRef Lee G, C R, A M. Investigating the Efficacy of Nonlinear Dimensionality Reduction Schemes in Classifying Gene and Protein Expression Studies. IEEE/ACM Trans Comp Biol Bioinf. 2008; 5(3):368–84.CrossRef
31.
go back to reference Cho YM, Ritchie MD, Moore JH, Park JY, Lee KU, Shin HD, Lee HK, Park KS. Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus. Diabetologia. 2004; 47(3):549–54.PubMedCrossRef Cho YM, Ritchie MD, Moore JH, Park JY, Lee KU, Shin HD, Lee HK, Park KS. Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus. Diabetologia. 2004; 47(3):549–54.PubMedCrossRef
32.
go back to reference El-Deredy W. Pattern recognition approaches in biomedical and clinical magnetic resonance spectroscopy: a review. NMR Biomed. 1997; 10(3):99–124.PubMedCrossRef El-Deredy W. Pattern recognition approaches in biomedical and clinical magnetic resonance spectroscopy: a review. NMR Biomed. 1997; 10(3):99–124.PubMedCrossRef
33.
go back to reference Maglaveras N, Stamkopoulos T, Diamantaras K, Pappas C, Strintzis M. ECG pattern recognition and classification using non-linear transformations and neural networks: A review. Int J Med Inform. 1998; 52:191–208.PubMedCrossRef Maglaveras N, Stamkopoulos T, Diamantaras K, Pappas C, Strintzis M. ECG pattern recognition and classification using non-linear transformations and neural networks: A review. Int J Med Inform. 1998; 52:191–208.PubMedCrossRef
34.
go back to reference Polikar R. Ensemble based systems in decision making. Circuits Syst Mag IEEE. 2006; 6(3):21–45.CrossRef Polikar R. Ensemble based systems in decision making. Circuits Syst Mag IEEE. 2006; 6(3):21–45.CrossRef
35.
go back to reference Sparks R, Madabhushi A. Statistical shape model for manifold regularization: Gleason grading of prostate histology. Comput Vis Image Underst. 2013; 117(9):1138–46.PubMedPubMedCentralCrossRef Sparks R, Madabhushi A. Statistical shape model for manifold regularization: Gleason grading of prostate histology. Comput Vis Image Underst. 2013; 117(9):1138–46.PubMedPubMedCentralCrossRef
36.
go back to reference Lin YY, Liu TL, Fuh CS. Local Ensemble Kernel Learning for Object Category Recognition. In: Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference On: 2007. p. 1–8. Lin YY, Liu TL, Fuh CS. Local Ensemble Kernel Learning for Object Category Recognition. In: Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference On: 2007. p. 1–8.
38.
go back to reference Fern X, Brodley C. Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach. In: Proc. 20th Int’l Conf. Machine Learning: 2003. p. 186–93. Fern X, Brodley C. Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach. In: Proc. 20th Int’l Conf. Machine Learning: 2003. p. 186–93.
39.
go back to reference Fred ALN, Jain AK. Combining Multiple Clusterings Using Evidence Accumulation. IEEE Trans Pattern Anal Mach Intell. 2005; 27(6):835–50.PubMedCrossRef Fred ALN, Jain AK. Combining Multiple Clusterings Using Evidence Accumulation. IEEE Trans Pattern Anal Mach Intell. 2005; 27(6):835–50.PubMedCrossRef
40.
go back to reference Xia T, Tao D, Mei T, Zhang Y. Multiview spectral embedding. IEEE Trans Syst Man Cybern B Cybern. 2010; 40(6):1438–46.PubMedCrossRef Xia T, Tao D, Mei T, Zhang Y. Multiview spectral embedding. IEEE Trans Syst Man Cybern B Cybern. 2010; 40(6):1438–46.PubMedCrossRef
41.
go back to reference Wang S, Huang Q, Jiang S, Tian Q. S3MKL: Scalable Semi-Supervised Multiple Kernel Learning for Real-World Image Applications. Multimedia IEEE Trans. 2012; 14(4):1259–74.CrossRef Wang S, Huang Q, Jiang S, Tian Q. S3MKL: Scalable Semi-Supervised Multiple Kernel Learning for Real-World Image Applications. Multimedia IEEE Trans. 2012; 14(4):1259–74.CrossRef
42.
go back to reference Samko O, Marshall A, Rosin P. Selection of the optimal parameter value for the Isomap algorithm. Pattern Recognit Lett. 2006; 27(9):968–79.CrossRef Samko O, Marshall A, Rosin P. Selection of the optimal parameter value for the Isomap algorithm. Pattern Recognit Lett. 2006; 27(9):968–79.CrossRef
43.
go back to reference Saul LK, Roweis ST. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res. 2003; 4:119–55. Saul LK, Roweis ST. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J Mach Learn Res. 2003; 4:119–55.
44.
go back to reference Enas GG, Choi SC. Choice of the smoothing parameter and efficiency of k-nearest neighbor classification. Comput Math Appl. 1986; 12(2, Part A):235–44.CrossRef Enas GG, Choi SC. Choice of the smoothing parameter and efficiency of k-nearest neighbor classification. Comput Math Appl. 1986; 12(2, Part A):235–44.CrossRef
45.
go back to reference Tiwari P, Rosen M, Madabhushi A. Consensus-locally linear embedding (C-LLE): application to prostate cancer detection on magnetic resonance spectroscopy. In: Proc. 11th Int’l Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol. 5242.2008. p. 330–8. Tiwari P, Rosen M, Madabhushi A. Consensus-locally linear embedding (C-LLE): application to prostate cancer detection on magnetic resonance spectroscopy. In: Proc. 11th Int’l Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol. 5242.2008. p. 330–8.
46.
go back to reference Tiwari P, Viswanath S, Kurhanewicz J, Sridhar A, Madabhushi A. Multimodal wavelet embedding representation for data combination (MaWERiC): integrating magnetic resonance imaging and spectroscopy for prostate cancer detection. NMR Biomed. 2011; 25:607–19.PubMedPubMedCentralCrossRef Tiwari P, Viswanath S, Kurhanewicz J, Sridhar A, Madabhushi A. Multimodal wavelet embedding representation for data combination (MaWERiC): integrating magnetic resonance imaging and spectroscopy for prostate cancer detection. NMR Biomed. 2011; 25:607–19.PubMedPubMedCentralCrossRef
47.
go back to reference Simonetti AW, Melssen WJ, Edelenyi FSD, van Asten JJA, Heerschap A, Buydens LMC. Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification. NMR Biomedicine. 2005; 18(1):34–43.CrossRef Simonetti AW, Melssen WJ, Edelenyi FSD, van Asten JJA, Heerschap A, Buydens LMC. Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification. NMR Biomedicine. 2005; 18(1):34–43.CrossRef
48.
go back to reference Lindseth F, Ommedal S, Bang J, Unsgard G, Nagelhus-Hernes TA. Image fusion of ultrasound and MRI as an aid for assessing anatomical shifts and improving overview and interpretation in ultrasound-guided neurosurgery. Int Congress Ser. 2001; 1230(0):254–60.CrossRef Lindseth F, Ommedal S, Bang J, Unsgard G, Nagelhus-Hernes TA. Image fusion of ultrasound and MRI as an aid for assessing anatomical shifts and improving overview and interpretation in ultrasound-guided neurosurgery. Int Congress Ser. 2001; 1230(0):254–60.CrossRef
49.
go back to reference Liu X, Langer DL, Haider MA, Yang Y, Wernick MN, Yetik IS. Prostate Cancer Segmentation With Simultaneous Estimation of Markov Random Field Parameters and Class. IEEE Trans Med Imag. 2009; 28(6):906–15.CrossRef Liu X, Langer DL, Haider MA, Yang Y, Wernick MN, Yetik IS. Prostate Cancer Segmentation With Simultaneous Estimation of Markov Random Field Parameters and Class. IEEE Trans Med Imag. 2009; 28(6):906–15.CrossRef
50.
go back to reference Chan I, Wells III W, Mulkern RV, Haker S, Zhang J, Zou KH, Maier SE, Tempany CMC. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier. Med Phys. 2003; 30(9):2390–8.PubMedCrossRef Chan I, Wells III W, Mulkern RV, Haker S, Zhang J, Zou KH, Maier SE, Tempany CMC. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier. Med Phys. 2003; 30(9):2390–8.PubMedCrossRef
51.
go back to reference Freund Y, Schapire R. Experiments with a New Boosting Algorithm. In: Proc Int’l Conf Mach Learn: 1996. p. 148–56. Freund Y, Schapire R. Experiments with a New Boosting Algorithm. In: Proc Int’l Conf Mach Learn: 1996. p. 148–56.
52.
go back to reference Volpi M, Matasci G, Kanevski M, Tuia D. Semi-supervised multiview embedding for hyperspectral data classification. Neurocomputing. 2014; 145(0):427–37.CrossRef Volpi M, Matasci G, Kanevski M, Tuia D. Semi-supervised multiview embedding for hyperspectral data classification. Neurocomputing. 2014; 145(0):427–37.CrossRef
54.
55.
go back to reference Davenport MA, Hegde C, Duarte MF, Baraniuk RG. High Dimensional Data Fusion via Joint Manifold Learning. In: AAAI Fall 2010 Symposium on Manifold Learning, Arlington, VA: 2010. Davenport MA, Hegde C, Duarte MF, Baraniuk RG. High Dimensional Data Fusion via Joint Manifold Learning. In: AAAI Fall 2010 Symposium on Manifold Learning, Arlington, VA: 2010.
56.
go back to reference Choo J, Bohn S, Nakamura G, White AM, Park H. Heterogeneous Data Fusion via Space Alignment Using Nonmetric Multidimensional Scaling. In: SDM: 2012. p. 177–88. Choo J, Bohn S, Nakamura G, White AM, Park H. Heterogeneous Data Fusion via Space Alignment Using Nonmetric Multidimensional Scaling. In: SDM: 2012. p. 177–88.
57.
go back to reference Wang C, Mahadevan S. Manifold alignment using Procrustes analysis. In: Proceedings of the 25th International Conference on Machine Learning. ACM: 2008. p. 1120–1127. Wang C, Mahadevan S. Manifold alignment using Procrustes analysis. In: Proceedings of the 25th International Conference on Machine Learning. ACM: 2008. p. 1120–1127.
58.
go back to reference Tian X, Gasso G, Canu S. A multiple kernel framework for inductive semi-supervised SVM learning. Neurocomputing. 2012; 90:46–58.CrossRef Tian X, Gasso G, Canu S. A multiple kernel framework for inductive semi-supervised SVM learning. Neurocomputing. 2012; 90:46–58.CrossRef
59.
go back to reference Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems?J Mach Learn Res. 2014; 15(1):3133–81. Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need hundreds of classifiers to solve real world classification problems?J Mach Learn Res. 2014; 15(1):3133–81.
60.
go back to reference Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006; 7:1–30. Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006; 7:1–30.
62.
go back to reference Wang H, Nie F, Huang H, Risacher SL, Saykin AJ, Shen L, et al.Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning. Bioinformatics. 2012; 28(12):127–36.CrossRef Wang H, Nie F, Huang H, Risacher SL, Saykin AJ, Shen L, et al.Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning. Bioinformatics. 2012; 28(12):127–36.CrossRef
63.
go back to reference Tosun D, Joshi S, Weiner MW. for the Alzheimer’s Disease Neuroimaging Initiative. Multimodal mri-based imputation of the a β+ in early mild cognitive impairment. Ann Clin Transl Neurol. 2014; 1(3):160–70.PubMedPubMedCentralCrossRef Tosun D, Joshi S, Weiner MW. for the Alzheimer’s Disease Neuroimaging Initiative. Multimodal mri-based imputation of the a β+ in early mild cognitive impairment. Ann Clin Transl Neurol. 2014; 1(3):160–70.PubMedPubMedCentralCrossRef
64.
go back to reference Kerr WT, Hwang ES, Raman KR, Barritt SE, Patel AB, Le JM, Hori JM, Davis EC, Braesch CT, Janio EA, Lau EP, Cho AY, Anderson A, Silverman DHS, Salamon N, Engel Jr J, Stern JM, Cohen MS. Multimodal diagnosis of epilepsy using conditional dependence and multiple imputation. Int Workshop Pattern Recognit Neuroimaging. 2014;1–4. doi:10.1109/PRNI.2014.6858526. Kerr WT, Hwang ES, Raman KR, Barritt SE, Patel AB, Le JM, Hori JM, Davis EC, Braesch CT, Janio EA, Lau EP, Cho AY, Anderson A, Silverman DHS, Salamon N, Engel Jr J, Stern JM, Cohen MS. Multimodal diagnosis of epilepsy using conditional dependence and multiple imputation. Int Workshop Pattern Recognit Neuroimaging. 2014;1–4. doi:10.​1109/​PRNI.​2014.​6858526.
65.
go back to reference Moutselos K, Maglogiannis I, Chatziioannou A. Integration of High-Volume Molecular and Imaging Data for Composite Biomarker Discovery in the Study of Melanoma. BioMed Res Int. 2014; 2014(145243):14. Moutselos K, Maglogiannis I, Chatziioannou A. Integration of High-Volume Molecular and Imaging Data for Composite Biomarker Discovery in the Study of Melanoma. BioMed Res Int. 2014; 2014(145243):14.
66.
go back to reference Gade S, Porzelius C, Falth M, Brase J, Wuttig D, Kuner R, Binder H, Sultmann H, BeiSZbarth T. Graph based fusion of miRNA and mRNA expression data improves clinical outcome prediction in prostate cancer. BMC Bioinformatics. 2011; 12(1):488.PubMedPubMedCentralCrossRef Gade S, Porzelius C, Falth M, Brase J, Wuttig D, Kuner R, Binder H, Sultmann H, BeiSZbarth T. Graph based fusion of miRNA and mRNA expression data improves clinical outcome prediction in prostate cancer. BMC Bioinformatics. 2011; 12(1):488.PubMedPubMedCentralCrossRef
67.
go back to reference Sui J, He H, Pearlson GD, Adali T, Kiehl KA, Yu Q, Clark VP, Castro E, White T, Mueller BA, Ho BC, Andreasen NC, Calhoun VD. Three-way (N-way) fusion of brain imaging data based on mCCA+jICA and its application to discriminating schizophrenia. NeuroImage. 2013; 66(0):119–32.PubMedCrossRef Sui J, He H, Pearlson GD, Adali T, Kiehl KA, Yu Q, Clark VP, Castro E, White T, Mueller BA, Ho BC, Andreasen NC, Calhoun VD. Three-way (N-way) fusion of brain imaging data based on mCCA+jICA and its application to discriminating schizophrenia. NeuroImage. 2013; 66(0):119–32.PubMedCrossRef
Metadata
Title
Dimensionality reduction-based fusion approaches for imaging and non-imaging biomedical data: concepts, workflow, and use-cases
Authors
Satish E. Viswanath
Pallavi Tiwari
George Lee
Anant Madabhushi
for the Alzheimer’s Disease Neuroimaging Initiative
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2017
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-016-0172-6

Other articles of this Issue 1/2017

BMC Medical Imaging 1/2017 Go to the issue