Skip to main content
Top
Published in: BMC Medical Imaging 1/2016

Open Access 01-12-2016 | Research article

Phase-contrast MRI volume flow – a comparison of breath held and navigator based acquisitions

Authors: Charlotta Andersson, Johan Kihlberg, Tino Ebbers, Lena Lindström, Carl-Johan Carlhäll, Jan E. Engvall

Published in: BMC Medical Imaging | Issue 1/2016

Login to get access

Abstract

Background

Magnetic Resonance Imaging (MRI) 2D phase-contrast flow measurement has been regarded as the gold standard in blood flow measurements and can be performed with free breathing or breath held techniques. We hypothesized that the accuracy of flow measurements obtained with segmented phase-contrast during breath holding, and in particular higher number of k-space segments, would be non-inferior compared to navigator phase-contrast. Volumes obtained from anatomic segmentation of cine MRI and Doppler echocardiography were used for additional reference.

Methods

Forty patients, five women and 35 men, mean age 65 years (range 53–80), were randomly selected and consented to the study. All underwent EKG-gated cardiac MRI including breath hold cine, navigator based free-breathing phase-contrast MRI and breath hold phase-contrast MRI using k-space segmentation factors 3 and 5, as well as transthoracic echocardiography within 2 days.

Results

In navigator based free-breathing phase-contrast flow, mean stroke volume and cardiac output were 79.7 ± 17.1 ml and 5071 ± 1192 ml/min, respectively. The duration of the acquisition was 50 ± 6 s. With k-space segmentation factor 3, the corresponding values were 77.7 ml ± 17.5 ml and 4979 ± 1211 ml/min (p = 0.15 vs navigator). The duration of the breath hold was 17 ± 2 s. K-space segmentation factor 5 gave mean stroke volume 77.9 ± 16.4 ml, cardiac output 5142 ± 1197 ml/min (p = 0.33 vs navigator), and breath hold time 11 ± 1 s. Anatomical segmentation of cine gave mean stroke volume and cardiac output 91.2 ± 20.8 ml and 5963 ± 1452 ml/min, respectively. Echocardiography was reliable in 20 of the 40 patients. The mean diameter of the left ventricular outflow tract was 20.7 ± 1.5 mm, stroke volume 78.3 ml ± 15.2 ml and cardiac output 5164 ± 1249 ml/min.

Conclusions

In forty consecutive patients with coronary heart disease, breath holding and segmented k-space sampling techniques for phase-contrast flow produced stroke volumes and cardiac outputs similar to those obtained with free-breathing navigator based phase-contrast MRI, using less time. The values obtained agreed fairly well with Doppler echocardiography while there was a larger difference when compared with anatomical volume determinations using SSFP (steady state free precession) cine MRI.
Literature
2.
go back to reference Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233–70.CrossRefPubMed Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16:233–70.CrossRefPubMed
3.
go back to reference Sjoberg BJ, Ask P, Loyd D, Wranne B. Subaortic flow profiles in aortic valve disease: a two-dimensional color Doppler study. J Am Soc Echocardiogr. 1994;7:276–85.CrossRefPubMed Sjoberg BJ, Ask P, Loyd D, Wranne B. Subaortic flow profiles in aortic valve disease: a two-dimensional color Doppler study. J Am Soc Echocardiogr. 1994;7:276–85.CrossRefPubMed
4.
go back to reference Moran PR. A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging. 1982;1:197–203.CrossRefPubMed Moran PR. A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging. 1982;1:197–203.CrossRefPubMed
5.
go back to reference Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR. Phase contrast cine magnetic resonance imaging. Magn Reson Q. 1991;7:229–54.PubMed Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR. Phase contrast cine magnetic resonance imaging. Magn Reson Q. 1991;7:229–54.PubMed
6.
go back to reference Gatehouse PD, Rolf MP, Bloch KM, Graves MJ, Kilner PJ, Firmin DN, Hofman MB. A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors. J Cardiovasc Magn Reson. 2012;14:72.CrossRefPubMedPubMedCentral Gatehouse PD, Rolf MP, Bloch KM, Graves MJ, Kilner PJ, Firmin DN, Hofman MB. A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors. J Cardiovasc Magn Reson. 2012;14:72.CrossRefPubMedPubMedCentral
7.
go back to reference Gatehouse PD, Rolf MP, Graves MJ, Hofman MB, Totman J, Werner B, Quest RA, Liu Y, von Spiczak J, Dieringer M, et al. Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson. 2010;12:5.CrossRefPubMedPubMedCentral Gatehouse PD, Rolf MP, Graves MJ, Hofman MB, Totman J, Werner B, Quest RA, Liu Y, von Spiczak J, Dieringer M, et al. Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson. 2010;12:5.CrossRefPubMedPubMedCentral
8.
go back to reference Chernobelsky A, Shubayev O, Comeau CR, Wolff SD. Baseline correction of phase contrast images improves quantification of blood flow in the great vessels. J Cardiovasc Magn Reson. 2007;9:681–5.CrossRefPubMed Chernobelsky A, Shubayev O, Comeau CR, Wolff SD. Baseline correction of phase contrast images improves quantification of blood flow in the great vessels. J Cardiovasc Magn Reson. 2007;9:681–5.CrossRefPubMed
9.
go back to reference Luk Pat GT, Pauly JM, Hu BS, Nishimura DG. One-shot spatially resolved velocity imaging. Magn Reson Med. 1998;40:603–13.CrossRefPubMed Luk Pat GT, Pauly JM, Hu BS, Nishimura DG. One-shot spatially resolved velocity imaging. Magn Reson Med. 1998;40:603–13.CrossRefPubMed
10.
go back to reference Johansson B, Babu-Narayan SV, Kilner PJ. The effects of breath-holding on pulmonary regurgitation measured by cardiovascular magnetic resonance velocity mapping. J Cardiovasc Magn Reson. 2009;11:1.CrossRefPubMedPubMedCentral Johansson B, Babu-Narayan SV, Kilner PJ. The effects of breath-holding on pulmonary regurgitation measured by cardiovascular magnetic resonance velocity mapping. J Cardiovasc Magn Reson. 2009;11:1.CrossRefPubMedPubMedCentral
11.
go back to reference Ley S, Fink C, Puderbach M, Zaporozhan J, Plathow C, Eichinger M, Hosch W, Kreitner KF, Kauczor HU. MRI Measurement of the hemodynamics of the pulmonary and systemic arterial circulation: influence of breathing maneuvers. AJR Am J Roentgenol. 2006;187:439–44.CrossRefPubMed Ley S, Fink C, Puderbach M, Zaporozhan J, Plathow C, Eichinger M, Hosch W, Kreitner KF, Kauczor HU. MRI Measurement of the hemodynamics of the pulmonary and systemic arterial circulation: influence of breathing maneuvers. AJR Am J Roentgenol. 2006;187:439–44.CrossRefPubMed
12.
go back to reference Sakuma H, Kawada N, Kubo H, Nishide Y, Takano K, Kato N, Takeda K. Effect of breath holding on blood flow measurement using fast velocity encoded cine MRI. Magn Reson Med. 2001;45:346–8.CrossRefPubMed Sakuma H, Kawada N, Kubo H, Nishide Y, Takano K, Kato N, Takeda K. Effect of breath holding on blood flow measurement using fast velocity encoded cine MRI. Magn Reson Med. 2001;45:346–8.CrossRefPubMed
13.
go back to reference Chai P, Mohiaddin R. How we perform cardiovascular magnetic resonance flow assessment using phase-contrast velocity mapping. J Cardiovasc Magn Reson. 2005;7:705–16.CrossRefPubMed Chai P, Mohiaddin R. How we perform cardiovascular magnetic resonance flow assessment using phase-contrast velocity mapping. J Cardiovasc Magn Reson. 2005;7:705–16.CrossRefPubMed
14.
go back to reference Queiros S, Barbosa D, Engvall J, Ebbers T, Nagel E, Sarvari SI, Claus P, Fonseca JC, Vilaca JL, D'Hooge J. Multi-centre validation of an automatic algorithm for fast 4D myocardial segmentation in cine CMR datasets. Eur Heart J Cardiovasc Imaging. 2015. [Epub ahead of print] PMID:26494877. Queiros S, Barbosa D, Engvall J, Ebbers T, Nagel E, Sarvari SI, Claus P, Fonseca JC, Vilaca JL, D'Hooge J. Multi-centre validation of an automatic algorithm for fast 4D myocardial segmentation in cine CMR datasets. Eur Heart J Cardiovasc Imaging. 2015. [Epub ahead of print] PMID:26494877.
15.
go back to reference Rademakers F, Engvall J, Edvardsen T, Monaghan M, Sicari R, Nagel E, Zamorano J, Ukkonen H, Ebbers T, Di Bello V, et al. Determining optimal noninvasive parameters for the prediction of left ventricular remodeling in chronic ischemic patients. Scand Cardiovasc J. 2013;47:329–34.CrossRefPubMed Rademakers F, Engvall J, Edvardsen T, Monaghan M, Sicari R, Nagel E, Zamorano J, Ukkonen H, Ebbers T, Di Bello V, et al. Determining optimal noninvasive parameters for the prediction of left ventricular remodeling in chronic ischemic patients. Scand Cardiovasc J. 2013;47:329–34.CrossRefPubMed
16.
go back to reference Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH. Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med. 1998;39:300–8.CrossRefPubMed Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH. Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med. 1998;39:300–8.CrossRefPubMed
17.
go back to reference Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, von Knobelsdorff-Brenkenhoff F, Kramer CM, Pennell DJ, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson. 2013;15:35.CrossRefPubMedPubMedCentral Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, von Knobelsdorff-Brenkenhoff F, Kramer CM, Pennell DJ, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson. 2013;15:35.CrossRefPubMedPubMedCentral
18.
go back to reference Douglas GA, Altman J. Practical statistics for medical research. London: Chapman & Hall; 1991. p. 365–95. Douglas GA, Altman J. Practical statistics for medical research. London: Chapman & Hall; 1991. p. 365–95.
19.
go back to reference Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner KF, Firmin DN. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol. 2005;15:2172–84.CrossRefPubMed Gatehouse PD, Keegan J, Crowe LA, Masood S, Mohiaddin RH, Kreitner KF, Firmin DN. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol. 2005;15:2172–84.CrossRefPubMed
20.
go back to reference Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, van Rossum AC, Shaw LJ, Yucel EK, Society for Cardiovascular Magnetic R, Working Group on Cardiovascular Magnetic Resonance of the European Society of C. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J. 2004;25:1940–65.CrossRefPubMed Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, van Rossum AC, Shaw LJ, Yucel EK, Society for Cardiovascular Magnetic R, Working Group on Cardiovascular Magnetic Resonance of the European Society of C. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J. 2004;25:1940–65.CrossRefPubMed
21.
go back to reference Uretsky S, Gillam L, Lang R, Chaudhry FA, Argulian E, Supariwala A, Gurram S, Jain K, Subero M, Jang JJ, et al. Discordance between echocardiography and MRI in the assessment of mitral regurgitation severity: a prospective multicenter trial. J Am Coll Cardiol. 2015;65:1078–88.CrossRefPubMed Uretsky S, Gillam L, Lang R, Chaudhry FA, Argulian E, Supariwala A, Gurram S, Jain K, Subero M, Jang JJ, et al. Discordance between echocardiography and MRI in the assessment of mitral regurgitation severity: a prospective multicenter trial. J Am Coll Cardiol. 2015;65:1078–88.CrossRefPubMed
22.
go back to reference Polte CL, Bech-Hanssen O, Johnsson AA, Gao SA, Lagerstrand KM. Mitral regurgitation quantification by cardiovascular magnetic resonance: a comparison of indirect quantification methods. Int J Cardiovasc Imaging. 2015;31:1223–31.CrossRefPubMed Polte CL, Bech-Hanssen O, Johnsson AA, Gao SA, Lagerstrand KM. Mitral regurgitation quantification by cardiovascular magnetic resonance: a comparison of indirect quantification methods. Int J Cardiovasc Imaging. 2015;31:1223–31.CrossRefPubMed
23.
go back to reference James SH, Wald R, Wintersperger BJ, Jimenez-Juan L, Deva D, Crean AM, Nguyen E, Paul NS, Ley S. Accuracy of right and left ventricular functional assessment by short-axis vs axial cine steady-state free-precession magnetic resonance imaging: intrapatient correlation with main pulmonary artery and ascending aorta phase-contrast flow measurements. Can Assoc Radiol J. 2013;64:213–9.CrossRefPubMed James SH, Wald R, Wintersperger BJ, Jimenez-Juan L, Deva D, Crean AM, Nguyen E, Paul NS, Ley S. Accuracy of right and left ventricular functional assessment by short-axis vs axial cine steady-state free-precession magnetic resonance imaging: intrapatient correlation with main pulmonary artery and ascending aorta phase-contrast flow measurements. Can Assoc Radiol J. 2013;64:213–9.CrossRefPubMed
24.
go back to reference Greupner J, Zimmermann E, Grohmann A, Dubel HP, Althoff TF, Borges AC, Rutsch W, Schlattmann P, Hamm B, Dewey M. Head-to-head comparison of left ventricular function assessment with 64-row computed tomography, biplane left cineventriculography, and both 2- and 3-dimensional transthoracic echocardiography: comparison with magnetic resonance imaging as the reference standard. J Am Coll Cardiol. 2012;59:1897–907.CrossRefPubMed Greupner J, Zimmermann E, Grohmann A, Dubel HP, Althoff TF, Borges AC, Rutsch W, Schlattmann P, Hamm B, Dewey M. Head-to-head comparison of left ventricular function assessment with 64-row computed tomography, biplane left cineventriculography, and both 2- and 3-dimensional transthoracic echocardiography: comparison with magnetic resonance imaging as the reference standard. J Am Coll Cardiol. 2012;59:1897–907.CrossRefPubMed
25.
go back to reference Karamitsos TD, Hudsmith LE, Selvanayagam JB, Neubauer S, Francis JM. Operator induced variability in left ventricular measurements with cardiovascular magnetic resonance is improved after training. J Cardiovasc Magn Reson. 2007;9:777–83.CrossRefPubMed Karamitsos TD, Hudsmith LE, Selvanayagam JB, Neubauer S, Francis JM. Operator induced variability in left ventricular measurements with cardiovascular magnetic resonance is improved after training. J Cardiovasc Magn Reson. 2007;9:777–83.CrossRefPubMed
26.
go back to reference Suinesiaputra A, Bluemke DA, Cowan BR, Friedrich MG, Kramer CM, Kwong R, Plein S, Schulz-Menger J, Westenberg JJ, Young AA, Nagel E. Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center variability and consensus contours. J Cardiovasc Magn Reson. 2015;17:63.CrossRefPubMedPubMedCentral Suinesiaputra A, Bluemke DA, Cowan BR, Friedrich MG, Kramer CM, Kwong R, Plein S, Schulz-Menger J, Westenberg JJ, Young AA, Nagel E. Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center variability and consensus contours. J Cardiovasc Magn Reson. 2015;17:63.CrossRefPubMedPubMedCentral
Metadata
Title
Phase-contrast MRI volume flow – a comparison of breath held and navigator based acquisitions
Authors
Charlotta Andersson
Johan Kihlberg
Tino Ebbers
Lena Lindström
Carl-Johan Carlhäll
Jan E. Engvall
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2016
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-016-0128-x

Other articles of this Issue 1/2016

BMC Medical Imaging 1/2016 Go to the issue