Skip to main content
Top
Published in: BMC Medical Imaging 1/2016

Open Access 01-12-2016 | Technical advance

Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data

Authors: Krisztián Szigeti, Tibor Szabó, Csaba Korom, Ilona Czibak, Ildikó Horváth, Dániel S. Veres, Zoltán Gyöngyi, Kinga Karlinger, Ralf Bergmann, Márta Pócsik, Ferenc Budán, Domokos Máthé

Published in: BMC Medical Imaging | Issue 1/2016

Login to get access

Abstract

Background

Lung diseases (resulting from air pollution) require a widely accessible method for risk estimation and early diagnosis to ensure proper and responsive treatment. Radiomics-based fractal dimension analysis of X-ray computed tomography attenuation patterns in chest voxels of mice exposed to different air polluting agents was performed to model early stages of disease and establish differential diagnosis.

Methods

To model different types of air pollution, BALBc/ByJ mouse groups were exposed to cigarette smoke combined with ozone, sulphur dioxide gas and a control group was established. Two weeks after exposure, the frequency distributions of image voxel attenuation data were evaluated. Specific cut-off ranges were defined to group voxels by attenuation. Cut-off ranges were binarized and their spatial pattern was associated with calculated fractal dimension, then abstracted by the fractal dimension -- cut-off range mathematical function. Nonparametric Kruskal-Wallis (KW) and Mann–Whitney post hoc (MWph) tests were used.

Results

Each cut-off range versus fractal dimension function plot was found to contain two distinctive Gaussian curves. The ratios of the Gaussian curve parameters are considerably significant and are statistically distinguishable within the three exposure groups.

Conclusions

A new radiomics evaluation method was established based on analysis of the fractal dimension of chest X-ray computed tomography data segments. The specific attenuation patterns calculated utilizing our method may diagnose and monitor certain lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, tuberculosis or lung carcinomas.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mandelbrot BB, Blumen A. Fractal Geometry: What is it, and What Does it do? Proc R Soc A. 1989;423:3–16.CrossRef Mandelbrot BB, Blumen A. Fractal Geometry: What is it, and What Does it do? Proc R Soc A. 1989;423:3–16.CrossRef
2.
go back to reference Al-Kadi OS, Watson D. Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng. 2008;55(7):1822–30.CrossRefPubMed Al-Kadi OS, Watson D. Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng. 2008;55(7):1822–30.CrossRefPubMed
3.
go back to reference van Rikxoort EM, van Ginneken B. Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review. Phys Med Biol. 2013;58:R187–220.CrossRefPubMed van Rikxoort EM, van Ginneken B. Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review. Phys Med Biol. 2013;58:R187–220.CrossRefPubMed
4.
go back to reference Smith TG, Lange GD, Marks WB. Fractal methods and results in cellular morphology - Dimensions, lacunarity and multifractals. J Neurosci Methods. 1996;69(2):123–36.CrossRefPubMed Smith TG, Lange GD, Marks WB. Fractal methods and results in cellular morphology - Dimensions, lacunarity and multifractals. J Neurosci Methods. 1996;69(2):123–36.CrossRefPubMed
5.
go back to reference Helmberger M, Pienn M, Urschler M, Kullnig P, Stollberger R, Kovacs G, et al. Quantification of tortuosity and fractal dimension of the lung vessels in pulmonary hypertension patients. PLoS One. 2014;9(1):e87515.PubMedCentralCrossRefPubMed Helmberger M, Pienn M, Urschler M, Kullnig P, Stollberger R, Kovacs G, et al. Quantification of tortuosity and fractal dimension of the lung vessels in pulmonary hypertension patients. PLoS One. 2014;9(1):e87515.PubMedCentralCrossRefPubMed
6.
go back to reference Shlesinger MF, West BJ. Complex fractal dimension of the bronchial tree. Phys Rev Lett. 1991;67(15):2106–8.CrossRefPubMed Shlesinger MF, West BJ. Complex fractal dimension of the bronchial tree. Phys Rev Lett. 1991;67(15):2106–8.CrossRefPubMed
7.
go back to reference Keller BM, Reeves AP, Henschke CI, Yankelevitz DF. Multivariate Compensation of Quantitative Pulmonary Emphysema Metric Variation from Low-Dose. Whole-Lung CT Scans Am J Roentgenol. 2011;197(3):495–502.CrossRef Keller BM, Reeves AP, Henschke CI, Yankelevitz DF. Multivariate Compensation of Quantitative Pulmonary Emphysema Metric Variation from Low-Dose. Whole-Lung CT Scans Am J Roentgenol. 2011;197(3):495–502.CrossRef
8.
go back to reference Huo Y, Choy JS, Wischgoll T, Luo T, Teague SD, Bhatt DL, et al. Computed tomography-based diagnosis of diffuse compensatory enlargement of coronary arteries using scaling power laws. J R Soc Interface. 2013;10(81):20121015.PubMedCentralCrossRefPubMed Huo Y, Choy JS, Wischgoll T, Luo T, Teague SD, Bhatt DL, et al. Computed tomography-based diagnosis of diffuse compensatory enlargement of coronary arteries using scaling power laws. J R Soc Interface. 2013;10(81):20121015.PubMedCentralCrossRefPubMed
9.
go back to reference Gould DJ, Vadakkan TJ, Poche RA, Dickinson ME. Multifractal and Lacunarity Analysis of Microvascular Morphology and Remodeling. Microcirculation. 2011;18(2):136–51.PubMedCentralCrossRefPubMed Gould DJ, Vadakkan TJ, Poche RA, Dickinson ME. Multifractal and Lacunarity Analysis of Microvascular Morphology and Remodeling. Microcirculation. 2011;18(2):136–51.PubMedCentralCrossRefPubMed
10.
go back to reference Glenny RW. Emergence of matched airway and vascular trees from fractal rules. J Appl Physiol. 2011;110(4):1119–29.CrossRefPubMed Glenny RW. Emergence of matched airway and vascular trees from fractal rules. J Appl Physiol. 2011;110(4):1119–29.CrossRefPubMed
11.
go back to reference Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):1–15.CrossRef Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):1–15.CrossRef
12.
go back to reference Smith Jr TG, Lange GD, Marks WB. Fractal methods and results in cellular morphology — dimensions, lacunarity and multifractals. J Neurosci Methods. 1996;69:123–36.CrossRefPubMed Smith Jr TG, Lange GD, Marks WB. Fractal methods and results in cellular morphology — dimensions, lacunarity and multifractals. J Neurosci Methods. 1996;69:123–36.CrossRefPubMed
13.
go back to reference Freedman D, Diaconis P. On the histogram as a density estimator: L2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete. 1981;57:453–76.CrossRef Freedman D, Diaconis P. On the histogram as a density estimator: L2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete. 1981;57:453–76.CrossRef
14.
go back to reference Sasaki M, Chubachi S, Kameyama N, Sato M, Haraguchi M, Miyazaki M, et al. Evaluation of cigarette smoke-induced emphysema in mice using quantitative micro-computed tomography. Am J Physiol Lung Cell Mol Physiol. 2015;308(10):1039–45.CrossRef Sasaki M, Chubachi S, Kameyama N, Sato M, Haraguchi M, Miyazaki M, et al. Evaluation of cigarette smoke-induced emphysema in mice using quantitative micro-computed tomography. Am J Physiol Lung Cell Mol Physiol. 2015;308(10):1039–45.CrossRef
15.
go back to reference Tantisuwat A, Thaveeratitham P. Effects of Smoking on Chest Expansion, Lung Function, and Respiratory Muscle Strength of Youths. J Phys Ther Sci. 2014;26:167–70.PubMedCentralCrossRefPubMed Tantisuwat A, Thaveeratitham P. Effects of Smoking on Chest Expansion, Lung Function, and Respiratory Muscle Strength of Youths. J Phys Ther Sci. 2014;26:167–70.PubMedCentralCrossRefPubMed
16.
go back to reference Gagnon P, Guenette JA, Daniel L, Louis L, Vincent M, François M, et al. Pathogenesis of hyperinflation in chronic obstructive pulmonary disease. Int J of Crohn Obstruct Pulmon Dist. 2014;9:187–201. Gagnon P, Guenette JA, Daniel L, Louis L, Vincent M, François M, et al. Pathogenesis of hyperinflation in chronic obstructive pulmonary disease. Int J of Crohn Obstruct Pulmon Dist. 2014;9:187–201.
17.
go back to reference Nagao M, Murase K. Measurement of heterogeneous distribution on Technegas SPECT images by three-dimensional fractal analysis. Ann Nucl Med. 2002;16(6):369–76.CrossRefPubMed Nagao M, Murase K. Measurement of heterogeneous distribution on Technegas SPECT images by three-dimensional fractal analysis. Ann Nucl Med. 2002;16(6):369–76.CrossRefPubMed
18.
20.
go back to reference Wagner U, Staats P, Fehmann H-C, Fischer A, Welte T, Groneberg DA. Analysis of airway secretions in a model of sulfur dioxide induced chronic obstructive pulmonary disease (COPD). J Occup Med Toxicol. 2006;1:12.PubMedCentralCrossRefPubMed Wagner U, Staats P, Fehmann H-C, Fischer A, Welte T, Groneberg DA. Analysis of airway secretions in a model of sulfur dioxide induced chronic obstructive pulmonary disease (COPD). J Occup Med Toxicol. 2006;1:12.PubMedCentralCrossRefPubMed
21.
go back to reference van Dijk WD, Gopal S, Scheepers PT. Nanoparticles in cigarette smoke; real-time undiluted measurements by a scanning mobility particle sizer. Anal Bioanal Chem. 2001;399:3573–8.CrossRef van Dijk WD, Gopal S, Scheepers PT. Nanoparticles in cigarette smoke; real-time undiluted measurements by a scanning mobility particle sizer. Anal Bioanal Chem. 2001;399:3573–8.CrossRef
22.
go back to reference Castañer E, Gallardo X, Pallardó Y, Branera J, Cabezuelo MA, Mata JM. Diseases affecting the peribronchovascular interstitium: CT findings and pathologic correlation. Curr Probl Diagn Radiol. 2005;34(2):63–75.CrossRefPubMed Castañer E, Gallardo X, Pallardó Y, Branera J, Cabezuelo MA, Mata JM. Diseases affecting the peribronchovascular interstitium: CT findings and pathologic correlation. Curr Probl Diagn Radiol. 2005;34(2):63–75.CrossRefPubMed
23.
go back to reference Bossé Y, Riesenfeld EP, Paré PD, Irvin CG. It’s not all smooth muscle: non-smooth-muscle elements in control of resistance to airflow. Annu Rev Physiol. 2010;72:437–62.CrossRefPubMed Bossé Y, Riesenfeld EP, Paré PD, Irvin CG. It’s not all smooth muscle: non-smooth-muscle elements in control of resistance to airflow. Annu Rev Physiol. 2010;72:437–62.CrossRefPubMed
24.
go back to reference Moldoveanu B, Otmishi P, Jani P, Walker J, Sarmiento X, Guardiola J, et al. Inflammatory mechanisms in the lung. J Inflamm Res. 2009;2:1–11.PubMedCentralPubMed Moldoveanu B, Otmishi P, Jani P, Walker J, Sarmiento X, Guardiola J, et al. Inflammatory mechanisms in the lung. J Inflamm Res. 2009;2:1–11.PubMedCentralPubMed
25.
go back to reference Maeno T, Houghton AM, Quintero PA, Grumelli S, Owen CA, Shapiro SD. CD8+ T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol. 2007;178(12):8090–6.CrossRefPubMed Maeno T, Houghton AM, Quintero PA, Grumelli S, Owen CA, Shapiro SD. CD8+ T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol. 2007;178(12):8090–6.CrossRefPubMed
27.
go back to reference Churg A, Cosio M, Wright JL. Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol Physiol. 2008;294(4):612–31.CrossRef Churg A, Cosio M, Wright JL. Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol Physiol. 2008;294(4):612–31.CrossRef
28.
go back to reference Chen RY, Dodd LE, Lee M, Paripati P, Hammoud DA, Mountz JM, et al. PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Sci Transl Med. 2014;6(265):166.CrossRef Chen RY, Dodd LE, Lee M, Paripati P, Hammoud DA, Mountz JM, et al. PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Sci Transl Med. 2014;6(265):166.CrossRef
29.
go back to reference Jobse BN, Rhem RG, Wang IQ, Counter WB, Stämpfli MR, Labiris NR. Detection of lung dysfunction using ventilation and perfusion SPECT in a mouse model of chronic cigarette smoke exposure. J Nucl Med. 2013;54(4):616–23.CrossRefPubMed Jobse BN, Rhem RG, Wang IQ, Counter WB, Stämpfli MR, Labiris NR. Detection of lung dysfunction using ventilation and perfusion SPECT in a mouse model of chronic cigarette smoke exposure. J Nucl Med. 2013;54(4):616–23.CrossRefPubMed
30.
go back to reference Beckett EL, Stevens RL, Jarnicki AG, Kim RY, Hanish I, Hansbro NG, et al. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J Allergy Clin Immunol. 2013;131(3):752–62.PubMedCentralCrossRefPubMed Beckett EL, Stevens RL, Jarnicki AG, Kim RY, Hanish I, Hansbro NG, et al. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J Allergy Clin Immunol. 2013;131(3):752–62.PubMedCentralCrossRefPubMed
Metadata
Title
Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data
Authors
Krisztián Szigeti
Tibor Szabó
Csaba Korom
Ilona Czibak
Ildikó Horváth
Dániel S. Veres
Zoltán Gyöngyi
Kinga Karlinger
Ralf Bergmann
Márta Pócsik
Ferenc Budán
Domokos Máthé
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2016
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-016-0118-z

Other articles of this Issue 1/2016

BMC Medical Imaging 1/2016 Go to the issue