Skip to main content
Top
Published in: BMC Medical Imaging 1/2016

Open Access 01-12-2016 | TECHNICAL ADVANCE

A sinogram denoising algorithm for low-dose computed tomography

Authors: Davood Karimi, Pierre Deman, Rabab Ward, Nancy Ford

Published in: BMC Medical Imaging | Issue 1/2016

Login to get access

Abstract

Background

From the viewpoint of the patients’ health, reducing the radiation dose in computed tomography (CT) is highly desirable. However, projection measurements acquired under low-dose conditions will contain much noise. Therefore, reconstruction of high-quality images from low-dose scans requires effective denoising of the projection measurements.

Methods

We propose a denoising algorithm that is based on maximizing the data likelihood and sparsity in the gradient domain. For Poisson noise, this formulation automatically leads to a locally adaptive denoising scheme. Because the resulting optimization problem is hard to solve and may also lead to artifacts, we suggest an explicitly local denoising method by adapting an existing algorithm for normally-distributed noise. We apply the proposed method on sets of simulated and real cone-beam projections and compare its performance with two other algorithms.

Results

The proposed algorithm effectively suppresses the noise in simulated and real CT projections. Denoising of the projections with the proposed algorithm leads to a substantial improvement of the reconstructed image in terms of noise level, spatial resolution, and visual quality.

Conclusion

The proposed algorithm can suppress very strong quantum noise in CT projections. Therefore, it can be used as an effective tool in low-dose CT.
Literature
1.
go back to reference Berrington de González A, Mahesh M, Kim K, et al.Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009; 169(22):2071.CrossRefPubMed Berrington de González A, Mahesh M, Kim K, et al.Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009; 169(22):2071.CrossRefPubMed
2.
go back to reference Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Physica Med. 2012; 28(2):94.CrossRef Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Physica Med. 2012; 28(2):94.CrossRef
3.
go back to reference Fessler JA. Statistical image reconstruction methods for transmission tomography. Handb Med Imaging. 2000; 2:1. Fessler JA. Statistical image reconstruction methods for transmission tomography. Handb Med Imaging. 2000; 2:1.
4.
go back to reference Hsieh J. Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise. Med Phys. 1998; 25(11):2139.CrossRefPubMed Hsieh J. Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise. Med Phys. 1998; 25(11):2139.CrossRefPubMed
5.
go back to reference Kachelriess M, Watzke O, Kalender W. Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys. 2001; 28(4):475.CrossRefPubMed Kachelriess M, Watzke O, Kalender W. Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys. 2001; 28(4):475.CrossRefPubMed
6.
go back to reference Forthmann P, Köhler T, Begemann PGC, Defrise M. Penalized maximum-likelihood sinogram restoration for dual focal spot computed tomography. Phys Med Biol. 2007; 52(15):4513.CrossRefPubMed Forthmann P, Köhler T, Begemann PGC, Defrise M. Penalized maximum-likelihood sinogram restoration for dual focal spot computed tomography. Phys Med Biol. 2007; 52(15):4513.CrossRefPubMed
7.
go back to reference LaRivière PJ. Penalized-likelihood sinogram smoothing for low-dose CT. Med Phys. 2005; 32(6):1676.CrossRef LaRivière PJ. Penalized-likelihood sinogram smoothing for low-dose CT. Med Phys. 2005; 32(6):1676.CrossRef
8.
go back to reference Kak AC, Slaney M. Principles of Computerized Tomographic Imaging. Philadelphia, PA: Society for Industrial and Applied Mathematics; 2001.CrossRef Kak AC, Slaney M. Principles of Computerized Tomographic Imaging. Philadelphia, PA: Society for Industrial and Applied Mathematics; 2001.CrossRef
9.
go back to reference Natterer F. The Mathematics of Computerized Tomography. Philadelphia, PA: Society for Industrial and Applied Mathematics; 2001.CrossRef Natterer F. The Mathematics of Computerized Tomography. Philadelphia, PA: Society for Industrial and Applied Mathematics; 2001.CrossRef
10.
go back to reference Jiao C, Wang D, Lu H, Zhang Z, Liang JZ. Multiscale noise reduction on low-dose CT sinogram by stationary wavelet transform. In: Nuclear Science Symposium Conference Record, 2008. NSS ’08. IEEE: 2008. p. 5339–44. Jiao C, Wang D, Lu H, Zhang Z, Liang JZ. Multiscale noise reduction on low-dose CT sinogram by stationary wavelet transform. In: Nuclear Science Symposium Conference Record, 2008. NSS ’08. IEEE: 2008. p. 5339–44.
11.
go back to reference Sahiner B, Yagle A. Reconstruction from projections under time-frequency constraints. Med Imaging IEEE Trans. 1995; 14(2):193.CrossRef Sahiner B, Yagle A. Reconstruction from projections under time-frequency constraints. Med Imaging IEEE Trans. 1995; 14(2):193.CrossRef
12.
go back to reference Macovski A. Medical Imaging Systems. Upper Saddle River, NJ: Prentice Hall; 1983. Macovski A. Medical Imaging Systems. Upper Saddle River, NJ: Prentice Hall; 1983.
13.
go back to reference Wang J, Lu H, Liang Z, Eremina D, Zhang G, Wang S, et al.An experimental study on the noise properties of x-ray CT sinogram data in Radon space. Phys Med Biol. 2008; 53(12):3327.PubMedCentralCrossRefPubMed Wang J, Lu H, Liang Z, Eremina D, Zhang G, Wang S, et al.An experimental study on the noise properties of x-ray CT sinogram data in Radon space. Phys Med Biol. 2008; 53(12):3327.PubMedCentralCrossRefPubMed
14.
go back to reference Manduca A, Yu L, Trzasko JD, Khaylova N, Kofler JM, McCollough CM, et al.Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Med Phys. 2009; 36(11):4911.PubMedCentralCrossRefPubMed Manduca A, Yu L, Trzasko JD, Khaylova N, Kofler JM, McCollough CM, et al.Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Med Phys. 2009; 36(11):4911.PubMedCentralCrossRefPubMed
15.
go back to reference Wang J, Li T, Lu H, Liang Z. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography. Med Imaging IEEE Trans. 2006; 25(10):1272.CrossRef Wang J, Li T, Lu H, Liang Z. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography. Med Imaging IEEE Trans. 2006; 25(10):1272.CrossRef
16.
go back to reference Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. Image Process IEEE Trans. 2006; 15(12):3736.CrossRef Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. Image Process IEEE Trans. 2006; 15(12):3736.CrossRef
17.
go back to reference Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration. IEEE Trans Image Process. 2008; 17(1):53.CrossRefPubMed Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration. IEEE Trans Image Process. 2008; 17(1):53.CrossRefPubMed
18.
go back to reference Chen Y, Yin X, Shi L, Shu H, Luo L, Coatrieux JL, et al. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys Med Biol. 2013; 58(16):5803.CrossRefPubMed Chen Y, Yin X, Shi L, Shu H, Luo L, Coatrieux JL, et al. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys Med Biol. 2013; 58(16):5803.CrossRefPubMed
19.
go back to reference Li S, Fang L, Yin H. An efficient dictionary learning algorithm and its application to 3-D medical image denoising. Biomed Eng IEEE Trans. 2012; 59(2):417.CrossRef Li S, Fang L, Yin H. An efficient dictionary learning algorithm and its application to 3-D medical image denoising. Biomed Eng IEEE Trans. 2012; 59(2):417.CrossRef
20.
go back to reference Buades A, Coll B, Morel JM. A non-local algorithm for image denoising. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol 2. IEEE: 2005. p. 60–5. Buades A, Coll B, Morel JM. A non-local algorithm for image denoising. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol 2. IEEE: 2005. p. 60–5.
21.
go back to reference Buades A, Coll B, Morel JM. A review of image denoising algorithms, with a new one. Multiscale Model Simul. 2005; 4(2):490.CrossRef Buades A, Coll B, Morel JM. A review of image denoising algorithms, with a new one. Multiscale Model Simul. 2005; 4(2):490.CrossRef
22.
go back to reference Maggioni M, Katkovnik V, Egiazarian K, Foi A. A nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans Image Process. 2013; 22(1):1057.CrossRef Maggioni M, Katkovnik V, Egiazarian K, Foi A. A nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans Image Process. 2013; 22(1):1057.CrossRef
23.
go back to reference Rudin LI, Osher S, Fatemi E, Physica D. Nonlinear total variation based noise removal algorithms. Nonlinear Phenomena. 1992; 60(1-4):259.CrossRef Rudin LI, Osher S, Fatemi E, Physica D. Nonlinear total variation based noise removal algorithms. Nonlinear Phenomena. 1992; 60(1-4):259.CrossRef
24.
go back to reference Le T, Chartrand R, Asaki T. A variational approach to reconstructing images corrupted by Poisson noise. J Math Imaging Vis. 2007; 27(3):257.CrossRef Le T, Chartrand R, Asaki T. A variational approach to reconstructing images corrupted by Poisson noise. J Math Imaging Vis. 2007; 27(3):257.CrossRef
25.
go back to reference Sawatzky A, Brune C, Müller J, Burger M. Total variation processing of images with Poisson statistics In: Jiang X, Petkov N, editors. Computer Analysis of Images and Patterns, Lecture Notes in Computer Science, vol. 5702. Berlin, Heidelberg: Springer: 2009. p. 533–40. Sawatzky A, Brune C, Müller J, Burger M. Total variation processing of images with Poisson statistics In: Jiang X, Petkov N, editors. Computer Analysis of Images and Patterns, Lecture Notes in Computer Science, vol. 5702. Berlin, Heidelberg: Springer: 2009. p. 533–40.
26.
go back to reference Chambolle A. An algorithm for total variation minimization and applications. J Math Imaging Vis. 2004; 20(1-2):89. Chambolle A. An algorithm for total variation minimization and applications. J Math Imaging Vis. 2004; 20(1-2):89.
27.
go back to reference Lefkimmiatis S, Bourquard A, Unser M. Hessian-based norm regularization for image restoration with biomedical applications. Image Process IEEE Trans. 2012; 21(3):983.CrossRef Lefkimmiatis S, Bourquard A, Unser M. Hessian-based norm regularization for image restoration with biomedical applications. Image Process IEEE Trans. 2012; 21(3):983.CrossRef
28.
go back to reference Lysaker M, Tai X. Iterative image restoration combining total variation minimization and a second-order functional. Int J Comput Vis. 2006; 66(1):5.CrossRef Lysaker M, Tai X. Iterative image restoration combining total variation minimization and a second-order functional. Int J Comput Vis. 2006; 66(1):5.CrossRef
29.
go back to reference Louchet C, Moisan L. Total variation as a local filter. SIAM J Imaging Sci. 2011; 4(2):651.CrossRef Louchet C, Moisan L. Total variation as a local filter. SIAM J Imaging Sci. 2011; 4(2):651.CrossRef
31.
go back to reference Kundel HL, Van Metter RL, Beutel J. Handbook of Medical Imaging, Volume 1. Physics and Psychophysics. Bellingham, WA: SPIE Publications; 2000. Kundel HL, Van Metter RL, Beutel J. Handbook of Medical Imaging, Volume 1. Physics and Psychophysics. Bellingham, WA: SPIE Publications; 2000.
32.
go back to reference Pluim J, Maintz J, Viergever M. Mutual-information-based registration of medical images: a survey. Med Imaging IEEE Trans. 2003; 22(8):986.CrossRef Pluim J, Maintz J, Viergever M. Mutual-information-based registration of medical images: a survey. Med Imaging IEEE Trans. 2003; 22(8):986.CrossRef
33.
go back to reference Bian J, Siewerdsen JH, Han X, Sidky EY, Prince JL, Pelizzari CA, et al.Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT. Phys Med Biol. 2010; 55(22):6575.PubMedCentralCrossRefPubMed Bian J, Siewerdsen JH, Han X, Sidky EY, Prince JL, Pelizzari CA, et al.Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT. Phys Med Biol. 2010; 55(22):6575.PubMedCentralCrossRefPubMed
34.
go back to reference Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A. 1984; 1(6):612.CrossRef Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A. 1984; 1(6):612.CrossRef
35.
go back to reference Wang Z, Bovik A, Sheikh H, Simoncelli E. Image quality assessment: from error visibility to structural similarity. Image Process IEEE Trans. 2004; 13(4):600.CrossRef Wang Z, Bovik A, Sheikh H, Simoncelli E. Image quality assessment: from error visibility to structural similarity. Image Process IEEE Trans. 2004; 13(4):600.CrossRef
36.
go back to reference Du LY, Umoh J, Nikolov HN, Pollmann SI, Lee TY, Holdsworth DW. A quality assurance phantom for the performance evaluation of volumetric micro-CT systems. Phys Med Biol. 2007; 52(23):7087.CrossRefPubMed Du LY, Umoh J, Nikolov HN, Pollmann SI, Lee TY, Holdsworth DW. A quality assurance phantom for the performance evaluation of volumetric micro-CT systems. Phys Med Biol. 2007; 52(23):7087.CrossRefPubMed
37.
go back to reference Buhr E, Günther-Kohfahl S, Neitzel U. Simple method for modulation transfer function determination of digital imaging detectors from edge images. In: Medical Imaging 2003. Bellingham, WA, USA: International Society for Optics and Photonics: 2003. p. 877–84. Buhr E, Günther-Kohfahl S, Neitzel U. Simple method for modulation transfer function determination of digital imaging detectors from edge images. In: Medical Imaging 2003. Bellingham, WA, USA: International Society for Optics and Photonics: 2003. p. 877–84.
38.
go back to reference Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. Image Process IEEE Trans. 2009; 18(11):2419.CrossRef Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. Image Process IEEE Trans. 2009; 18(11):2419.CrossRef
39.
go back to reference Long Y, Fessler J, Balter J. 3D forward and back-projection for x-ray CT using separable footprints. Med Imaging IEEE Trans. 2010; 29(11):1839.CrossRef Long Y, Fessler J, Balter J. 3D forward and back-projection for x-ray CT using separable footprints. Med Imaging IEEE Trans. 2010; 29(11):1839.CrossRef
40.
go back to reference De Man B, Basu S. Distance-driven projection and backprojection in three dimensions. Phys Med Biol. 2004; 49(11):2463.CrossRefPubMed De Man B, Basu S. Distance-driven projection and backprojection in three dimensions. Phys Med Biol. 2004; 49(11):2463.CrossRefPubMed
Metadata
Title
A sinogram denoising algorithm for low-dose computed tomography
Authors
Davood Karimi
Pierre Deman
Rabab Ward
Nancy Ford
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2016
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-016-0112-5

Other articles of this Issue 1/2016

BMC Medical Imaging 1/2016 Go to the issue