Skip to main content
Top
Published in: BMC Medical Imaging 1/2015

Open Access 01-12-2015 | Research Article

Automated lesion detection on MRI scans using combined unsupervised and supervised methods

Authors: Dazhou Guo, Julius Fridriksson, Paul Fillmore, Christopher Rorden, Hongkai Yu, Kang Zheng, Song Wang

Published in: BMC Medical Imaging | Issue 1/2015

Login to get access

Abstract

Background

Accurate and precise detection of brain lesions on MR images (MRI) is paramount for accurately relating lesion location to impaired behavior. In this paper, we present a novel method to automatically detect brain lesions from a T1-weighted 3D MRI. The proposed method combines the advantages of both unsupervised and supervised methods.

Methods

First, unsupervised methods perform a unified segmentation normalization to warp images from the native space into a standard space and to generate probability maps for different tissue types, e.g., gray matter, white matter and fluid. This allows us to construct an initial lesion probability map by comparing the normalized MRI to healthy control subjects. Then, we perform non-rigid and reversible atlas-based registration to refine the probability maps of gray matter, white matter, external CSF, ventricle, and lesions. These probability maps are combined with the normalized MRI to construct three types of features, with which we use supervised methods to train three support vector machine (SVM) classifiers for a combined classifier. Finally, the combined classifier is used to accomplish lesion detection.

Results

We tested this method using T1-weighted MRIs from 60 in-house stroke patients. Using leave-one-out cross validation, the proposed method can achieve an average Dice coefficient of 73.1 % when compared to lesion maps hand-delineated by trained neurologists. Furthermore, we tested the proposed method on the T1-weighted MRIs in the MICCAI BRATS 2012 dataset. The proposed method can achieve an average Dice coefficient of 66.5 % in comparison to the expert annotated tumor maps provided in MICCAI BRATS 2012 dataset. In addition, on these two test datasets, the proposed method shows competitive performance to three state-of-the-art methods, including Stamatakis et al., Seghier et al., and Sanjuan et al.

Conclusions

In this paper, we introduced a novel automated procedure for lesion detection from T1-weighted MRIs by combining both an unsupervised and a supervised component. In the unsupervised component, we proposed a method to identify lesioned hemisphere to help normalize the patient MRI with lesions and initialize/refine a lesion probability map. In the supervised component, we extracted three different-order statistical features from both the tissue/lesion probability maps obtained from the unsupervised component and the original MRI intensity. Three support vector machine classifiers are then trained for the three features respectively and combined for final voxel-based lesion classification.
Literature
1.
go back to reference Fridriksson J, Guo D, Fillmore P, Holland A, Rorden C. Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia. Brain. 2013; 136:3451–460.CrossRefPubMedPubMedCentral Fridriksson J, Guo D, Fillmore P, Holland A, Rorden C. Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia. Brain. 2013; 136:3451–460.CrossRefPubMedPubMedCentral
2.
go back to reference Tecichmann M, Kas A, Boutet C, Ferrieux S, Nogues M, Samri D, et al.Deciphering logopenic primary progressive aphasia: A clinical, imaging and biomarker investigation. Brain. 2013; 136:3474–488.CrossRef Tecichmann M, Kas A, Boutet C, Ferrieux S, Nogues M, Samri D, et al.Deciphering logopenic primary progressive aphasia: A clinical, imaging and biomarker investigation. Brain. 2013; 136:3474–488.CrossRef
4.
go back to reference Fiebach J, Jansen O, Schellinger P, Knauth M, Hartmann M, Heiland S, et al.Comparison of ct with diffusion-weighted mri in patients with hyperacute stroke. Neuroradiol. 2001; 43:628–32.CrossRef Fiebach J, Jansen O, Schellinger P, Knauth M, Hartmann M, Heiland S, et al.Comparison of ct with diffusion-weighted mri in patients with hyperacute stroke. Neuroradiol. 2001; 43:628–32.CrossRef
5.
go back to reference Farr TD, Wegener S. Use of magnetic resonance imaging to predict outcome after stroke: A review of experimental and clinical evidence. J Cereb Blood Flow Metab. 2010; 30:703–17.CrossRefPubMedPubMedCentral Farr TD, Wegener S. Use of magnetic resonance imaging to predict outcome after stroke: A review of experimental and clinical evidence. J Cereb Blood Flow Metab. 2010; 30:703–17.CrossRefPubMedPubMedCentral
6.
go back to reference Wilke M, de Haan B, Juenger H, Karmath HO. Manual, semi-automated, and automated delineation of chronic brain lesions: a comparison of methods. Neuroimage. 2011; 56:2038–046.CrossRefPubMed Wilke M, de Haan B, Juenger H, Karmath HO. Manual, semi-automated, and automated delineation of chronic brain lesions: a comparison of methods. Neuroimage. 2011; 56:2038–046.CrossRefPubMed
7.
go back to reference Anbeek P, Vincken KL, Van Osch MJ, Bisschops RH, Van der Ground J. Automatic segmentation of different-sized white matter lesions by voxel probability estimation. Med Image Anal. 2004; 8:205–15.CrossRefPubMed Anbeek P, Vincken KL, Van Osch MJ, Bisschops RH, Van der Ground J. Automatic segmentation of different-sized white matter lesions by voxel probability estimation. Med Image Anal. 2004; 8:205–15.CrossRefPubMed
8.
go back to reference Bernasconi A. Advanced mri analysis methods for detection of focal cortical dysplasia. Epileptic Disord. 2003; 5:81–4. Bernasconi A. Advanced mri analysis methods for detection of focal cortical dysplasia. Epileptic Disord. 2003; 5:81–4.
9.
go back to reference Bilello M, Arkuszewski M, Nucifora P, Nasrallah I, Melhem ER, Krejza J. Multiple sclerosis: Identification of temporal changes in brain lesions with computer-assisted detection software. Neuroradiol J. 2013; 26:143–50.CrossRefPubMed Bilello M, Arkuszewski M, Nucifora P, Nasrallah I, Melhem ER, Krejza J. Multiple sclerosis: Identification of temporal changes in brain lesions with computer-assisted detection software. Neuroradiol J. 2013; 26:143–50.CrossRefPubMed
10.
go back to reference Ong HK, Ramachandram D, Mandava R, Shuaib IL. Automatic white matter lesion segmentation using an adaptive outlier detection method. Neuroimage. 2012; 30:807–23. Ong HK, Ramachandram D, Mandava R, Shuaib IL. Automatic white matter lesion segmentation using an adaptive outlier detection method. Neuroimage. 2012; 30:807–23.
11.
go back to reference Seghier ML, Ramlackhansingh A, Crinion J, Leff AP, Price CJ. Lesion identification using unified segmentation-normalization models and fuzzy clustering. Neuroimage. 2008; 41(4):1253–1266.CrossRefPubMedPubMedCentral Seghier ML, Ramlackhansingh A, Crinion J, Leff AP, Price CJ. Lesion identification using unified segmentation-normalization models and fuzzy clustering. Neuroimage. 2008; 41(4):1253–1266.CrossRefPubMedPubMedCentral
12.
go back to reference Spies L, Tewes A, Opfer R, Buchert R, Winkler G, et al.Fully automatic detection of deep white matter t1 hypointense lesions in multiple sclerosis. Phys Med Biol. 2013; 58:8323–337.CrossRefPubMed Spies L, Tewes A, Opfer R, Buchert R, Winkler G, et al.Fully automatic detection of deep white matter t1 hypointense lesions in multiple sclerosis. Phys Med Biol. 2013; 58:8323–337.CrossRefPubMed
13.
go back to reference Stamatakis EA, Tyler LK. Identifying lesions on structural brain images-validation of the method and application to neuropsychological patients. Brain and Lang. 2005; 94:167–77.CrossRef Stamatakis EA, Tyler LK. Identifying lesions on structural brain images-validation of the method and application to neuropsychological patients. Brain and Lang. 2005; 94:167–77.CrossRef
14.
go back to reference Artzi M, Aizenstein O, Jonas-Kimchi T, Myers V, Hallevi H, Bashat DB. Flari lesion segmentation: Application in patients with brain tumors and acute ischemic stroke. Eur J Radiol. 2013; 82:1512–1518.CrossRefPubMed Artzi M, Aizenstein O, Jonas-Kimchi T, Myers V, Hallevi H, Bashat DB. Flari lesion segmentation: Application in patients with brain tumors and acute ischemic stroke. Eur J Radiol. 2013; 82:1512–1518.CrossRefPubMed
15.
go back to reference Despotovic I, Segers I, Platisa L, Vansteenkiste E, Plzurica A, Deblaere K, et al.Automatic 3d graph cuts for brain cortex segmentation in patients with focal cortical dysplasia. Conf Proc IEEE Eng Med Biol Soc. 2011;:7981–4. Despotovic I, Segers I, Platisa L, Vansteenkiste E, Plzurica A, Deblaere K, et al.Automatic 3d graph cuts for brain cortex segmentation in patients with focal cortical dysplasia. Conf Proc IEEE Eng Med Biol Soc. 2011;:7981–4.
16.
go back to reference Gondal AH, Khan MNA. A review of fully automated techniques for brain tumor detection from mr images. Int J Comput Sci. 2013; 2:55–61. Gondal AH, Khan MNA. A review of fully automated techniques for brain tumor detection from mr images. Int J Comput Sci. 2013; 2:55–61.
17.
go back to reference Gordillo N, Montseny E, Sobrevilla P. State of the art survey on mri brain tumor segmentation. Magn Reson Imaging. 2013; 31:1426–1438.CrossRefPubMed Gordillo N, Montseny E, Sobrevilla P. State of the art survey on mri brain tumor segmentation. Magn Reson Imaging. 2013; 31:1426–1438.CrossRefPubMed
18.
go back to reference Shen S, Szameitat AJ, Sterr A. Detection of infarct lesions from single mri modality using inconsistency between voxel intensity and spatial location - a 3-d automatic approach. IEEE Trans Inf Technol Biomed. 2008; 12:532–40.CrossRefPubMed Shen S, Szameitat AJ, Sterr A. Detection of infarct lesions from single mri modality using inconsistency between voxel intensity and spatial location - a 3-d automatic approach. IEEE Trans Inf Technol Biomed. 2008; 12:532–40.CrossRefPubMed
19.
go back to reference Shen S, Szameitat AJ, Sterr A. An improved lesion detection approach based on similarity measurement between fuzzy intensity segmentation and spatial probability maps. Magn Reson Imaging. 2010; 28:245–54.CrossRefPubMed Shen S, Szameitat AJ, Sterr A. An improved lesion detection approach based on similarity measurement between fuzzy intensity segmentation and spatial probability maps. Magn Reson Imaging. 2010; 28:245–54.CrossRefPubMed
20.
go back to reference Sanjun A, Price CJ, Mancini L, Josse G, Grogan A, Yamamoto AK, et al.Automated identification of brain tumors from single mr images based on segmentation with refined patient-specific priors. Front Neurosci. 2013. Sanjun A, Price CJ, Mancini L, Josse G, Grogan A, Yamamoto AK, et al.Automated identification of brain tumors from single mr images based on segmentation with refined patient-specific priors. Front Neurosci. 2013.
21.
go back to reference Xu T, Mandal M. Automatic brain tumor extraction from t1-weighted coronal mri using fast bounding box and dynamic snake. International Conference of the IEEE Engineering in Medicine and Biology Society. 2012:444–447. Xu T, Mandal M. Automatic brain tumor extraction from t1-weighted coronal mri using fast bounding box and dynamic snake. International Conference of the IEEE Engineering in Medicine and Biology Society. 2012:444–447.
22.
go back to reference Abdulah BA, Younis AA, John NM. Multi-sectional views textural based svm for ms lesion segmentation in multi-channels mris. The Open Biomed Eng J. 2012; 6:56–72.CrossRef Abdulah BA, Younis AA, John NM. Multi-sectional views textural based svm for ms lesion segmentation in multi-channels mris. The Open Biomed Eng J. 2012; 6:56–72.CrossRef
23.
go back to reference Desikan R, Cabral H, Hess C, et al.Automated MRI measures identify individuals with mild cognitive impairment and Alzheimers disease. Brain. 2009; 132:2048–057.CrossRefPubMedPubMedCentral Desikan R, Cabral H, Hess C, et al.Automated MRI measures identify individuals with mild cognitive impairment and Alzheimers disease. Brain. 2009; 132:2048–057.CrossRefPubMedPubMedCentral
24.
go back to reference Fiot JB, Cohen LD, Raniga P, Fripp J. Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines. Int J Numer Methods in Biomed Eng. 2013; 29:905–15.CrossRef Fiot JB, Cohen LD, Raniga P, Fripp J. Efficient brain lesion segmentation using multi-modality tissue-based feature selection and support vector machines. Int J Numer Methods in Biomed Eng. 2013; 29:905–15.CrossRef
25.
go back to reference Geremia E, Clatz O, Menze BH, Konukoglu E, Criminisi A, Ayache N. Spatial decision forests for ms lesion segmentation in multi-channel magnetic resonance images. NeuroImage. 2011; 57:378–90.CrossRefPubMed Geremia E, Clatz O, Menze BH, Konukoglu E, Criminisi A, Ayache N. Spatial decision forests for ms lesion segmentation in multi-channel magnetic resonance images. NeuroImage. 2011; 57:378–90.CrossRefPubMed
26.
go back to reference Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, et al.Computer-assisted segmentation of white matter lesions in 3d mr images using support vector machine. Acad Radiol. 2008; 15:300–13.CrossRefPubMedPubMedCentral Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, et al.Computer-assisted segmentation of white matter lesions in 3d mr images using support vector machine. Acad Radiol. 2008; 15:300–13.CrossRefPubMedPubMedCentral
27.
go back to reference Morra J, Tu Z, Toga A, Thompson P. Automated segmentation of ms lesions using a contextual model for the miccai grand challenge. MICCAI 2008 Workshop. 2008. Morra J, Tu Z, Toga A, Thompson P. Automated segmentation of ms lesions using a contextual model for the miccai grand challenge. MICCAI 2008 Workshop. 2008.
28.
go back to reference Quddus A, Fieguth P, Basir O. Adaboost and support vector machines for white matter lesion segmentation in mr images. Conf IEEE Eng Med Biol Soc. 2005; 1:463–6. Quddus A, Fieguth P, Basir O. Adaboost and support vector machines for white matter lesion segmentation in mr images. Conf IEEE Eng Med Biol Soc. 2005; 1:463–6.
29.
go back to reference Schneell S, Saur D, Kreher BW, Hennig J, Burkhardt H, Kiselev VG. Fully automated classification of hardi in vivo data using a support vector machine. NeuroImage. 2009; 46:642–51.CrossRef Schneell S, Saur D, Kreher BW, Hennig J, Burkhardt H, Kiselev VG. Fully automated classification of hardi in vivo data using a support vector machine. NeuroImage. 2009; 46:642–51.CrossRef
33.
go back to reference Kovesi P. Image features from phase congruency. Videre: J Comp Vis Res. 1999; 1:1–26. Kovesi P. Image features from phase congruency. Videre: J Comp Vis Res. 1999; 1:1–26.
34.
go back to reference Jiang J, Wu Y, Huang M, Yang W, Chen W, Feng Q. 3d brain tumor segmentation in multimodal mr images based on learning population and patient specific feature sets. Comput Med Imaging Graph. 2013; 37:512–21.CrossRefPubMed Jiang J, Wu Y, Huang M, Yang W, Chen W, Feng Q. 3d brain tumor segmentation in multimodal mr images based on learning population and patient specific feature sets. Comput Med Imaging Graph. 2013; 37:512–21.CrossRefPubMed
35.
go back to reference Popuri K, Cobzas D, Murtha A, Jagersand M. 3d variational brain tumor segmentation using a high dimensional feature set. In J Comput Assisted Radiology. 2012; 7:493–506.CrossRef Popuri K, Cobzas D, Murtha A, Jagersand M. 3d variational brain tumor segmentation using a high dimensional feature set. In J Comput Assisted Radiology. 2012; 7:493–506.CrossRef
36.
go back to reference Alipanahi B, Biggs M, Ghodsi A. Distance metric learning vs. fisher discriminant analysis. In: Cohn A, editor. Proceedings of the 23rd national conference on Artificial intelligence - Volume 2 (AAAI’08), Vol. 2. AAAI Press;. 2008. p. 598-603. Alipanahi B, Biggs M, Ghodsi A. Distance metric learning vs. fisher discriminant analysis. In: Cohn A, editor. Proceedings of the 23rd national conference on Artificial intelligence - Volume 2 (AAAI’08), Vol. 2. AAAI Press;. 2008. p. 598-603.
37.
go back to reference Aprile I, Iaiza F, Lavaroni A, Budai R, Dolso P, Scott CA, et al.Analysis of cystic intracranial lesions performed with fluid-attenuated inversion recovery mr imaging. Am J Neuroradiology. 1999; 20:1259–1267. Aprile I, Iaiza F, Lavaroni A, Budai R, Dolso P, Scott CA, et al.Analysis of cystic intracranial lesions performed with fluid-attenuated inversion recovery mr imaging. Am J Neuroradiology. 1999; 20:1259–1267.
38.
go back to reference Ohe Y, Hayashi T, Deguchi I, Fukuoka T, Horiuchi Y, Maruyama H, et al.Mri abnormality of the pulvinar in patients with status epilepticus. J Neuroradiol. 2014; 41:220–6.CrossRefPubMed Ohe Y, Hayashi T, Deguchi I, Fukuoka T, Horiuchi Y, Maruyama H, et al.Mri abnormality of the pulvinar in patients with status epilepticus. J Neuroradiol. 2014; 41:220–6.CrossRefPubMed
39.
40.
go back to reference Evans AC, Collins DL, Millst SR, Brown ED, Kelly RL, Peters TM. 3d statistical neuroanatomical models from 305 mri volumes. Nucl Sci Symp Med Imaging Conf. 1993; 3:1813–1817. Evans AC, Collins DL, Millst SR, Brown ED, Kelly RL, Peters TM. 3d statistical neuroanatomical models from 305 mri volumes. Nucl Sci Symp Med Imaging Conf. 1993; 3:1813–1817.
42.
go back to reference Breet M, Leff AP, Rorden C, Ashburner J. Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage. 2001; 14:486–500.CrossRef Breet M, Leff AP, Rorden C, Ashburner J. Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage. 2001; 14:486–500.CrossRef
45.
go back to reference Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G. Automated multi-modality image registration based on information theory. Inf Process Med Imaging. 1995; 3:263–74. Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G. Automated multi-modality image registration based on information theory. Inf Process Med Imaging. 1995; 3:263–74.
46.
go back to reference Tyler LK, Marslen-Wilson W, Stamatakis EA. Dissociating neuro-cognitive component processes: voxel-based correlational methodlogy. Neuropsychologia. 2005;:771–8. Tyler LK, Marslen-Wilson W, Stamatakis EA. Dissociating neuro-cognitive component processes: voxel-based correlational methodlogy. Neuropsychologia. 2005;:771–8.
47.
go back to reference Larsen R. An Introduction to Mathematical Statistics and Its Applications. Upper Saddle River, N: Prentice Hall; 2001. Larsen R. An Introduction to Mathematical Statistics and Its Applications. Upper Saddle River, N: Prentice Hall; 2001.
48.
go back to reference Friston KJ, Josephs O, Zarahn E, Holmes AP, Rouquette S, Poline JB. To smooth or not to smooth. NeuroImage. 2000; 12:196–208.CrossRefPubMed Friston KJ, Josephs O, Zarahn E, Holmes AP, Rouquette S, Poline JB. To smooth or not to smooth. NeuroImage. 2000; 12:196–208.CrossRefPubMed
49.
go back to reference Cui X, Liu Y, Shan S, Chen X, Gao W. 3d haar-like features for pedestrian detection. 2007 IEEE Int Conf Multimed Expo. 2007; 1:1263–1266.CrossRef Cui X, Liu Y, Shan S, Chen X, Gao W. 3d haar-like features for pedestrian detection. 2007 IEEE Int Conf Multimed Expo. 2007; 1:1263–1266.CrossRef
50.
go back to reference Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995; 20:273–97. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995; 20:273–97.
52.
53.
go back to reference Lee MA, Smith S, Palace J, Mathews PM. Defining multiple sclerosis disease activity using mri t2-weighted difference imaging. Brain. 1998; 121:2095–102.CrossRefPubMed Lee MA, Smith S, Palace J, Mathews PM. Defining multiple sclerosis disease activity using mri t2-weighted difference imaging. Brain. 1998; 121:2095–102.CrossRefPubMed
54.
go back to reference Jovicich J, Czanner S, Greve D, Haley E, Kouwe A, Gollub R, et al.Reliability in multi-site structural mri studies: Effects of gradient non-linearity correction on phantom and human data. NeuroImage. 2006; 30:436–43.CrossRefPubMed Jovicich J, Czanner S, Greve D, Haley E, Kouwe A, Gollub R, et al.Reliability in multi-site structural mri studies: Effects of gradient non-linearity correction on phantom and human data. NeuroImage. 2006; 30:436–43.CrossRefPubMed
55.
go back to reference Liu Y, Collins R. Robust midsagittal plane extraction from normal and pathological 3d neuroradiology images. IEEE Transact Med Imaging. 2001; 20:173–92. Liu Y, Collins R. Robust midsagittal plane extraction from normal and pathological 3d neuroradiology images. IEEE Transact Med Imaging. 2001; 20:173–92.
56.
go back to reference Tuzikov AV, Colliot O, Block I. Evaluation of the symmetry plane in 3d mr images. Pattern Recog Lettters. 2003; 24:2219–233.CrossRef Tuzikov AV, Colliot O, Block I. Evaluation of the symmetry plane in 3d mr images. Pattern Recog Lettters. 2003; 24:2219–233.CrossRef
Metadata
Title
Automated lesion detection on MRI scans using combined unsupervised and supervised methods
Authors
Dazhou Guo
Julius Fridriksson
Paul Fillmore
Christopher Rorden
Hongkai Yu
Kang Zheng
Song Wang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2015
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-015-0092-x

Other articles of this Issue 1/2015

BMC Medical Imaging 1/2015 Go to the issue