Skip to main content
Top
Published in: BMC Medical Imaging 1/2015

Open Access 01-12-2015 | Research article

Reproducibility of brain metabolite concentration measurements in lesion free white matter at 1.5 T

Authors: Martin H J Busch, Wolfgang Vollmann, Serban Mateiescu, Manuel Stolze, Martin Deli, Marietta Garmer, Dietrich H W Grönemeyer

Published in: BMC Medical Imaging | Issue 1/2015

Login to get access

Abstract

Background

Post processing for brain spectra has a great influence on the fit quality of individual spectra, as well as on the reproducibility of results from comparable spectra. This investigation used pairs of spectra, identical in system parameters, position and time assumed to differ only in noise. The metabolite amplitudes of fitted time domain spectroscopic data were tested on reproducibility for the main brain metabolites.

Methods

Proton spectra of white matter brain tissue were acquired with a short spin echo time of 30 ms and a moderate repetition time of 1500 ms at 1.5 T. The pairs were investigated with one time domain post-processing algorithm using different parameters. The number of metabolites, the use of prior knowledge, base line parameters and common or individual damping were varied to evaluate the best reproducibility.

Results

The protocols with most reproducible amplitudes for N-acetylaspartate, creatine, choline, myo-inositol and the combined Glx line of glutamate and glutamine in lesion free white matter have the following common features: common damping of the main metabolites, a baseline using only the points of the first 10 ms, no additional lipid/macromolecule lines and Glx is taken as the sum of separately fitted glutamate and glutamine. This parameter set is different to the one delivering the best individual fit results.

Discussion

All spectra were acquired in “lesion free” (no lesion signs found in MR imaging) white matter. Spectra of brain lesions, for example tumors, can be drastically different. Thus the results are limited to lesion free brain tissue. Nevertheless the application to studies is broad, because small alterations in brain biochemistry of lesion free areas had been detected nearby tumors, in patients with multiple sclerosis, drug abuse or psychiatric disorders.

Conclusion

Main metabolite amplitudes inside healthy brain can be quantified with a normalized root mean square deviation around 5 % using CH3 of creatine as reference. Only the reproducibility of myo-inositol is roughly twice as bad. The reproducibility should be similar using other references like internal or external water for an absolute concentration evaluation and are not influenced by relaxation corrections with literature values.
Literature
1.
go back to reference Barany M, Langer BG, Glick RP, Venkatasubramanian PN, Wilbur AC, Spigos DG. In vivo H-1 spectroscopy in humans at 1.5 T. Radiology. 1988;167:839–44.CrossRefPubMed Barany M, Langer BG, Glick RP, Venkatasubramanian PN, Wilbur AC, Spigos DG. In vivo H-1 spectroscopy in humans at 1.5 T. Radiology. 1988;167:839–44.CrossRefPubMed
2.
go back to reference Barany M, Spigos DG, Mok E, Venkatasubramanian PN, Wilbur AC, Langer BG. High resolution proton magnetic resonance spectroscopy of human brain and liver. Magn Reson Imaging. 1987;5:393–8.CrossRefPubMed Barany M, Spigos DG, Mok E, Venkatasubramanian PN, Wilbur AC, Langer BG. High resolution proton magnetic resonance spectroscopy of human brain and liver. Magn Reson Imaging. 1987;5:393–8.CrossRefPubMed
3.
go back to reference Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R, et al. Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology. 1989;172:541–8.CrossRefPubMed Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R, et al. Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology. 1989;172:541–8.CrossRefPubMed
4.
go back to reference Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R. Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn Reson Med. 1989;11:47–63.CrossRefPubMed Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R. Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn Reson Med. 1989;11:47–63.CrossRefPubMed
5.
go back to reference Bruhn H, Michaelis T, Merboldt KD, Hanicke W, Gyngell ML, Hamburger C, et al. On the interpretation of proton NMR spectra from brain tumours in vivo and in vitro. NMR Biomed. 1992;5:253–8.CrossRefPubMed Bruhn H, Michaelis T, Merboldt KD, Hanicke W, Gyngell ML, Hamburger C, et al. On the interpretation of proton NMR spectra from brain tumours in vivo and in vitro. NMR Biomed. 1992;5:253–8.CrossRefPubMed
6.
go back to reference Frahm J, Michaelis T, Merboldt KD, Hanicke W, Gyngell ML, Bruhn H. On the N-acetyl methyl resonance in localized 1H NMR spectra of human brain in vivo. NMR Biomed. 1991;4:201–4.CrossRefPubMed Frahm J, Michaelis T, Merboldt KD, Hanicke W, Gyngell ML, Bruhn H. On the N-acetyl methyl resonance in localized 1H NMR spectra of human brain in vivo. NMR Biomed. 1991;4:201–4.CrossRefPubMed
7.
go back to reference Hennig J, Pfister H, Ernst T, Ott D. Direct absolute quantification of metabolites in the human brain with in vivo localized proton spectroscopy. NMR Biomed. 1992;5:193–9.CrossRefPubMed Hennig J, Pfister H, Ernst T, Ott D. Direct absolute quantification of metabolites in the human brain with in vivo localized proton spectroscopy. NMR Biomed. 1992;5:193–9.CrossRefPubMed
8.
go back to reference Watanabe M, Liao JH, Jara H, Sakai O. Multispectral quantitative MR imaging of the human brain: lifetime age-related effects. Radiographics. 2013;33:1305–19.CrossRefPubMed Watanabe M, Liao JH, Jara H, Sakai O. Multispectral quantitative MR imaging of the human brain: lifetime age-related effects. Radiographics. 2013;33:1305–19.CrossRefPubMed
9.
go back to reference Scheenen TW, Gambarota G, Weiland E, Klomp DW, Futterer JJ, Barentsz JO, et al. Optimal timing for in vivo 1H-MR spectroscopic imaging of the human prostate at 3T. Magn Reson Med. 2005;53:1268–74.CrossRefPubMed Scheenen TW, Gambarota G, Weiland E, Klomp DW, Futterer JJ, Barentsz JO, et al. Optimal timing for in vivo 1H-MR spectroscopic imaging of the human prostate at 3T. Magn Reson Med. 2005;53:1268–74.CrossRefPubMed
10.
go back to reference Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D. Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med. 2001;31:269–86.CrossRefPubMed Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D. Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med. 2001;31:269–86.CrossRefPubMed
11.
go back to reference Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, et al. Java-based graphical user interface for the MRUI quantitation package. MAGMA. 2001;12:141–52.CrossRefPubMed Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, et al. Java-based graphical user interface for the MRUI quantitation package. MAGMA. 2001;12:141–52.CrossRefPubMed
12.
go back to reference Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30:672–9.CrossRefPubMed Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30:672–9.CrossRefPubMed
13.
go back to reference Kobus T, Wright AJ, Weiland E, Heerschap A, Scheenen TW. Metabolite ratios in H MR spectroscopic imaging of the prostate. Magn Reson Med. 2014. Kobus T, Wright AJ, Weiland E, Heerschap A, Scheenen TW. Metabolite ratios in H MR spectroscopic imaging of the prostate. Magn Reson Med. 2014.
14.
go back to reference Scheenen TW, Futterer J, Weiland E, van Hecke P, Lemort M, Zechmann C, et al. Discriminating cancer from noncancer tissue in the prostate by 3-dimensional proton magnetic resonance spectroscopic imaging: a prospective multicenter validation study. Invest Radiol. 2011;46:25–33.CrossRefPubMed Scheenen TW, Futterer J, Weiland E, van Hecke P, Lemort M, Zechmann C, et al. Discriminating cancer from noncancer tissue in the prostate by 3-dimensional proton magnetic resonance spectroscopic imaging: a prospective multicenter validation study. Invest Radiol. 2011;46:25–33.CrossRefPubMed
15.
go back to reference E W: Automatische Quantifizierung von Metabolitenkonzentrationen in in vivo Spektren [PhD Thesis], Bremen 2004. 2004. E W: Automatische Quantifizierung von Metabolitenkonzentrationen in in vivo Spektren [PhD Thesis], Bremen 2004. 2004.
16.
go back to reference McLean MA, Simister RJ, Barker GJ, Duncan JS. Discrimination between neurochemical and macromolecular signals in human frontal lobes using short echo time proton magnetic resonance spectroscopy. Faraday Discuss. 2004;126:93–102. discussion 169-183.CrossRefPubMed McLean MA, Simister RJ, Barker GJ, Duncan JS. Discrimination between neurochemical and macromolecular signals in human frontal lobes using short echo time proton magnetic resonance spectroscopy. Faraday Discuss. 2004;126:93–102. discussion 169-183.CrossRefPubMed
17.
go back to reference Seeger U, Klose U, Mader I, Grodd W, Nagele T. Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases. Magn Reson Med. 2003;49:19–28.CrossRefPubMed Seeger U, Klose U, Mader I, Grodd W, Nagele T. Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases. Magn Reson Med. 2003;49:19–28.CrossRefPubMed
18.
go back to reference Wiebenga OT, Klauser AM, Nagtegaal GJ, Schoonheim MM, Barkhof F, Geurts JJ, et al. Longitudinal absolute metabolite quantification of white and gray matter regions in healthy controls using proton MR spectroscopic imaging. NMR Biomed. 2014;27:304–11.CrossRefPubMed Wiebenga OT, Klauser AM, Nagtegaal GJ, Schoonheim MM, Barkhof F, Geurts JJ, et al. Longitudinal absolute metabolite quantification of white and gray matter regions in healthy controls using proton MR spectroscopic imaging. NMR Biomed. 2014;27:304–11.CrossRefPubMed
19.
go back to reference Maudsley AA, Domenig C, Sheriff S. Reproducibility of serial whole-brain MR spectroscopic imaging. NMR Biomed. 2010;23:251–6.PubMedPubMedCentral Maudsley AA, Domenig C, Sheriff S. Reproducibility of serial whole-brain MR spectroscopic imaging. NMR Biomed. 2010;23:251–6.PubMedPubMedCentral
20.
go back to reference Mullins PG, Rowland L, Bustillo J, Bedrick EJ, Lauriello J, Brooks WM. Reproducibility of 1H-MRS measurements in schizophrenic patients. Magn Reson Med. 2003;50:704–7.CrossRefPubMed Mullins PG, Rowland L, Bustillo J, Bedrick EJ, Lauriello J, Brooks WM. Reproducibility of 1H-MRS measurements in schizophrenic patients. Magn Reson Med. 2003;50:704–7.CrossRefPubMed
21.
go back to reference Li BS, Babb JS, Soher BJ, Maudsley AA, Gonen O. Reproducibility of 3D proton spectroscopy in the human brain. Magn Reson Med. 2002;47:439–46.CrossRefPubMed Li BS, Babb JS, Soher BJ, Maudsley AA, Gonen O. Reproducibility of 3D proton spectroscopy in the human brain. Magn Reson Med. 2002;47:439–46.CrossRefPubMed
22.
go back to reference Gasparovic C, Bedrick EJ, Mayer AR, Yeo RA, Chen H, Damaraju E, et al. Test-retest reliability and reproducibility of short-echo-time spectroscopic imaging of human brain at 3T. Magn Reson Med. 2011;66:324–32.CrossRefPubMedPubMedCentral Gasparovic C, Bedrick EJ, Mayer AR, Yeo RA, Chen H, Damaraju E, et al. Test-retest reliability and reproducibility of short-echo-time spectroscopic imaging of human brain at 3T. Magn Reson Med. 2011;66:324–32.CrossRefPubMedPubMedCentral
23.
go back to reference Brooks WM, Friedman SD, Stidley CA. Reproducibility of 1H-MRS in vivo. Magn Reson Med. 1999;41:193–7.CrossRefPubMed Brooks WM, Friedman SD, Stidley CA. Reproducibility of 1H-MRS in vivo. Magn Reson Med. 1999;41:193–7.CrossRefPubMed
24.
go back to reference Maudsley AA, Domenig C, Govind V, Darkazanli A, Studholme C, Arheart K, et al. Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med. 2009;61:548–59.CrossRefPubMedPubMedCentral Maudsley AA, Domenig C, Govind V, Darkazanli A, Studholme C, Arheart K, et al. Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med. 2009;61:548–59.CrossRefPubMedPubMedCentral
25.
go back to reference Hofmann L, Slotboom J, Jung B, Maloca P, Boesch C, Kreis R. Quantitative 1H-magnetic resonance spectroscopy of human brain: Influence of composition and parameterization of the basis set in linear combination model-fitting. Magn Reson Med. 2002;48:440–53.CrossRefPubMed Hofmann L, Slotboom J, Jung B, Maloca P, Boesch C, Kreis R. Quantitative 1H-magnetic resonance spectroscopy of human brain: Influence of composition and parameterization of the basis set in linear combination model-fitting. Magn Reson Med. 2002;48:440–53.CrossRefPubMed
26.
go back to reference Gottschalk M, Lamalle L, Segebarth C. Short-TE localised 1H MRS of the human brain at 3 T: quantification of the metabolite signals using two approaches to account for macromolecular signal contributions. NMR Biomed. 2008;21:507–17.CrossRefPubMed Gottschalk M, Lamalle L, Segebarth C. Short-TE localised 1H MRS of the human brain at 3 T: quantification of the metabolite signals using two approaches to account for macromolecular signal contributions. NMR Biomed. 2008;21:507–17.CrossRefPubMed
27.
go back to reference Mazzoni LN, Belli G, Ginestroni A, Pratesi A, Agnoloni S, Diciotti S, et al. Computation of brain metabolite ratios in single-voxel proton MR spectroscopy: comparison between semiautomatic and automatic software. La Radiologia medica. 2010;115:125–32.CrossRefPubMed Mazzoni LN, Belli G, Ginestroni A, Pratesi A, Agnoloni S, Diciotti S, et al. Computation of brain metabolite ratios in single-voxel proton MR spectroscopy: comparison between semiautomatic and automatic software. La Radiologia medica. 2010;115:125–32.CrossRefPubMed
28.
go back to reference Pascual-Lozano AM, Martinez-Bisbal MC, Bosca-Blasco I, Valero-Merino C, Coret-Ferrer F, Marti-Bonmati L, et al. Casanova-Estruch B: [Total brain T2-hyperintense lesion-volume and the axonal damage in the normal-appearing white matter of brainstem in early lapsing-remitting multiple sclerosis]. Rev Neurol. 2007;45:468–73.PubMed Pascual-Lozano AM, Martinez-Bisbal MC, Bosca-Blasco I, Valero-Merino C, Coret-Ferrer F, Marti-Bonmati L, et al. Casanova-Estruch B: [Total brain T2-hyperintense lesion-volume and the axonal damage in the normal-appearing white matter of brainstem in early lapsing-remitting multiple sclerosis]. Rev Neurol. 2007;45:468–73.PubMed
29.
go back to reference Pascual AM, Martinez-Bisbal MC, Bosca I, Valero C, Coret F, Martinez-Granados B, et al. Axonal loss is progressive and partly dissociated from lesion load in early multiple sclerosis. Neurology. 2007;69:63–7.CrossRefPubMed Pascual AM, Martinez-Bisbal MC, Bosca I, Valero C, Coret F, Martinez-Granados B, et al. Axonal loss is progressive and partly dissociated from lesion load in early multiple sclerosis. Neurology. 2007;69:63–7.CrossRefPubMed
31.
go back to reference Helms G, Stawiarz L, Kivisakk P, Link H. Regression analysis of metabolite concentrations estimated from localized proton MR spectra of active and chronic multiple sclerosis lesions. Magn Reson Med. 2000;43:102–10.CrossRefPubMed Helms G, Stawiarz L, Kivisakk P, Link H. Regression analysis of metabolite concentrations estimated from localized proton MR spectra of active and chronic multiple sclerosis lesions. Magn Reson Med. 2000;43:102–10.CrossRefPubMed
32.
go back to reference Gasparovic C, Yeo R, Mannell M, Ling J, Elgie R, Phillips J, et al. Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study. J Neurotrauma. 2009;26:1635–43.CrossRefPubMedPubMedCentral Gasparovic C, Yeo R, Mannell M, Ling J, Elgie R, Phillips J, et al. Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study. J Neurotrauma. 2009;26:1635–43.CrossRefPubMedPubMedCentral
33.
go back to reference Tisell A, Leinhard OD, Warntjes JB, Lundberg P. Procedure for quantitative (1)H magnetic resonance spectroscopy and tissue characterization of human brain tissue based on the use of quantitative magnetic resonance imaging. Magn Reson Med. 2013;70:905–15.CrossRefPubMed Tisell A, Leinhard OD, Warntjes JB, Lundberg P. Procedure for quantitative (1)H magnetic resonance spectroscopy and tissue characterization of human brain tissue based on the use of quantitative magnetic resonance imaging. Magn Reson Med. 2013;70:905–15.CrossRefPubMed
34.
go back to reference Minati L, Aquino D, Bruzzone MG, Erbetta A. Quantitation of normal metabolite concentrations in six brain regions by in-vivoH-MR spectroscopy. J Med Phys. 2010;35:154–63.CrossRefPubMedPubMedCentral Minati L, Aquino D, Bruzzone MG, Erbetta A. Quantitation of normal metabolite concentrations in six brain regions by in-vivoH-MR spectroscopy. J Med Phys. 2010;35:154–63.CrossRefPubMedPubMedCentral
35.
go back to reference Busch M, Liebenrodt K, Gottfried S, Weiland E, Vollmann W, Mateiescu S, et al. Influence of brain tumors on the MR spectra of healthy brain tissue. Magn Reson Med. 2011;65:18–27.CrossRefPubMed Busch M, Liebenrodt K, Gottfried S, Weiland E, Vollmann W, Mateiescu S, et al. Influence of brain tumors on the MR spectra of healthy brain tissue. Magn Reson Med. 2011;65:18–27.CrossRefPubMed
36.
go back to reference Goebell E, Fiehler J, Ding XQ, Paustenbach S, Nietz S, Heese O, et al. Disarrangement of fiber tracts and decline of neuronal density correlate in glioma patients--a combined diffusion tensor imaging and 1H-MR spectroscopy study. AJNR Am J Neuroradiol. 2006;27:1426–31.PubMed Goebell E, Fiehler J, Ding XQ, Paustenbach S, Nietz S, Heese O, et al. Disarrangement of fiber tracts and decline of neuronal density correlate in glioma patients--a combined diffusion tensor imaging and 1H-MR spectroscopy study. AJNR Am J Neuroradiol. 2006;27:1426–31.PubMed
37.
go back to reference Inglese M, Brown S, Johnson G, Law M, Knopp E, Gonen O. Whole-brain N-acetylaspartate spectroscopy and diffusion tensor imaging in patients with newly diagnosed gliomas: a preliminary study. AJNR Am J Neuroradiol. 2006;27:2137–40.PubMed Inglese M, Brown S, Johnson G, Law M, Knopp E, Gonen O. Whole-brain N-acetylaspartate spectroscopy and diffusion tensor imaging in patients with newly diagnosed gliomas: a preliminary study. AJNR Am J Neuroradiol. 2006;27:2137–40.PubMed
38.
go back to reference Tisell A, Leinhard OD, Warntjes JB, Aalto A, Smedby O, Landtblom AM, et al. Increased concentrations of glutamate and glutamine in normal-appearing white matter of patients with multiple sclerosis and normal MR imaging brain scans. PLoS ONE. 2013;8:e61817.CrossRefPubMedPubMedCentral Tisell A, Leinhard OD, Warntjes JB, Aalto A, Smedby O, Landtblom AM, et al. Increased concentrations of glutamate and glutamine in normal-appearing white matter of patients with multiple sclerosis and normal MR imaging brain scans. PLoS ONE. 2013;8:e61817.CrossRefPubMedPubMedCentral
39.
go back to reference Cowan RL, Joers JM, Dietrich MS. N-acetylaspartate (NAA) correlates inversely with cannabis use in a frontal language processing region of neocortex in MDMA (Ecstasy) polydrug users: a 3 T magnetic resonance spectroscopy study. Pharmacol Biochem Behav. 2009;92:105–10.CrossRefPubMed Cowan RL, Joers JM, Dietrich MS. N-acetylaspartate (NAA) correlates inversely with cannabis use in a frontal language processing region of neocortex in MDMA (Ecstasy) polydrug users: a 3 T magnetic resonance spectroscopy study. Pharmacol Biochem Behav. 2009;92:105–10.CrossRefPubMed
40.
go back to reference Gazdzinski S, Durazzo TC, Mon A, Yeh PH, Meyerhoff DJ. Cerebral white matter recovery in abstinent alcoholics–a multimodality magnetic resonance study. Brain. 2010;133:1043–53.CrossRefPubMedPubMedCentral Gazdzinski S, Durazzo TC, Mon A, Yeh PH, Meyerhoff DJ. Cerebral white matter recovery in abstinent alcoholics–a multimodality magnetic resonance study. Brain. 2010;133:1043–53.CrossRefPubMedPubMedCentral
41.
go back to reference Licata SC, Renshaw PF. Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann N Y Acad Sci. 2010;1187:148–71.CrossRefPubMedPubMedCentral Licata SC, Renshaw PF. Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann N Y Acad Sci. 2010;1187:148–71.CrossRefPubMedPubMedCentral
42.
go back to reference Lee PL, Yiannoutsos CT, Ernst T, Chang L, Marra CM, Jarvik JG, et al. A multi-center 1H MRS study of the AIDS dementia complex: validation and preliminary analysis. J Magn Reson Imaging. 2003;17:625–33.CrossRefPubMed Lee PL, Yiannoutsos CT, Ernst T, Chang L, Marra CM, Jarvik JG, et al. A multi-center 1H MRS study of the AIDS dementia complex: validation and preliminary analysis. J Magn Reson Imaging. 2003;17:625–33.CrossRefPubMed
43.
go back to reference Paley M, Cozzone PJ, Alonso J, Vion-Dury J, Confort-Gouny S, Wilkinson ID, et al. A multicenter proton magnetic resonance spectroscopy study of neurological complications of AIDS. AIDS Res Hum Retrovir. 1996;12:213–22.CrossRefPubMed Paley M, Cozzone PJ, Alonso J, Vion-Dury J, Confort-Gouny S, Wilkinson ID, et al. A multicenter proton magnetic resonance spectroscopy study of neurological complications of AIDS. AIDS Res Hum Retrovir. 1996;12:213–22.CrossRefPubMed
44.
go back to reference Bernier D, Cookey J, McAllindon D, Bartha R, Hanstock CC, Newman AJ, et al. Multimodal neuroimaging of frontal white matter microstructure in early phase schizophrenia: the impact of early adolescent cannabis use. BMC Psychiatry. 2013;13:264.CrossRefPubMedPubMedCentral Bernier D, Cookey J, McAllindon D, Bartha R, Hanstock CC, Newman AJ, et al. Multimodal neuroimaging of frontal white matter microstructure in early phase schizophrenia: the impact of early adolescent cannabis use. BMC Psychiatry. 2013;13:264.CrossRefPubMedPubMedCentral
Metadata
Title
Reproducibility of brain metabolite concentration measurements in lesion free white matter at 1.5 T
Authors
Martin H J Busch
Wolfgang Vollmann
Serban Mateiescu
Manuel Stolze
Martin Deli
Marietta Garmer
Dietrich H W Grönemeyer
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2015
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-015-0085-9

Other articles of this Issue 1/2015

BMC Medical Imaging 1/2015 Go to the issue