Skip to main content
Top
Published in: BMC Medical Imaging 1/2015

Open Access 01-12-2015 | Research article

Non-contrast coronary artery wall and plaque imaging using inversion-recovery prepared steady-state free precession

Authors: Takeshi Ishimoto, Yasuyo Taniguchi, Tosiaki Miyati, Momoe Kawakami, Masaru Ishihara

Published in: BMC Medical Imaging | Issue 1/2015

Login to get access

Abstract

Background

The objective of this study was to investigate whether three-dimensional (3D) single inversion-recovery prepared steady-state free precession (IR-SSFP) could characterize the coronary artery wall.

Methods

IR-SSFP was scanned on a 1.5-T MR scanner with a five element cardiac coil. One hundred and twenty-one subjects with known or suspected coronary artery disease who had undergone X-ray coronary angiography (XCA) underwent coronary artery wall imaging using IR-SSFP sequences. In each coronary segment, the detection of the coronary wall was categorized, and contrast (signal of plaque minus signal of blood in the aorta divided by the signal of plaque plus signal of blood in the aorta) was calculated.

Results

422 of 517 segments (82 %) were successfully visualized, and the detection scores tended to be higher at the proximal coronary artery when compared with other segments of the coronary artery. High contrast (contrast ≥ 0.75) areas were observed in 62 of 218 segments with ≥50 % coronary artery stenosis by XCA but also in 25 of 299 segments without ≥50 % coronary stenosis.

Conclusions

IR-SSFP provided good visualization of the coronary wall. This approach represents a promising noninvasive strategy for the assessment of the coronary artery wall.
Literature
1.
go back to reference Ward MR, Pasterkamp G, Yeung AC, Borst C. Arterial remodeling: mechanisms and clinical implications. Circulation. 2000;102:1186–91.CrossRefPubMed Ward MR, Pasterkamp G, Yeung AC, Borst C. Arterial remodeling: mechanisms and clinical implications. Circulation. 2000;102:1186–91.CrossRefPubMed
2.
go back to reference Gogas BD1, Farooq V, Serruys PW, Garcìa-Garcìa HM. Assessment of coronary atherosclerosis by IVUS and IVUS-based imaging modalities: progression and regression studies, tissue composition and beyond. Int J Cardiovasc Imaging. 2011;27:225–37. Gogas BD1, Farooq V, Serruys PW, Garcìa-Garcìa HM. Assessment of coronary atherosclerosis by IVUS and IVUS-based imaging modalities: progression and regression studies, tissue composition and beyond. Int J Cardiovasc Imaging. 2011;27:225–37.
3.
go back to reference Yeon SB, Sabir A, Clouse M, Martinezclark PO, Peters DC. Delayed-enhancement cardiovascular magnetic resonance coronary artery Wall Imaging. J Am Coll Cardiol. 2007;50:441–7.CrossRefPubMed Yeon SB, Sabir A, Clouse M, Martinezclark PO, Peters DC. Delayed-enhancement cardiovascular magnetic resonance coronary artery Wall Imaging. J Am Coll Cardiol. 2007;50:441–7.CrossRefPubMed
4.
go back to reference Maintz D, Ozgun M, Hoffmeier A, Fischbach R, Kim YW, Stuber M, et al. Selective coronary artery plaque visualization and differentiation by contrast-enhanced inversion prepared MRI. Eur Heart J. 2006;27:1732–6.CrossRefPubMed Maintz D, Ozgun M, Hoffmeier A, Fischbach R, Kim YW, Stuber M, et al. Selective coronary artery plaque visualization and differentiation by contrast-enhanced inversion prepared MRI. Eur Heart J. 2006;27:1732–6.CrossRefPubMed
5.
go back to reference Oei ML, Ozgun M, Seifarth H, Bunck A, Fischbach R, Orwat S, et al. T1-weighted MRI for the detection of coronary artery plaque haemorrhage. Eur Radiol. 2010;20:2817–23.CrossRefPubMed Oei ML, Ozgun M, Seifarth H, Bunck A, Fischbach R, Orwat S, et al. T1-weighted MRI for the detection of coronary artery plaque haemorrhage. Eur Radiol. 2010;20:2817–23.CrossRefPubMed
6.
go back to reference Kawasaki T, Koga S, Koga N, Noguchi T, Tanaka H, Koga H, et al. Characterization of hyperintense plaque with noncontrast T1-weighted cardiovascular magnetic resonance coronary plaque imaging: comparison with multislice computed tomography and intravascular ultrasound. J Am Coll Cardiol Img. 2009;2:720–8.CrossRef Kawasaki T, Koga S, Koga N, Noguchi T, Tanaka H, Koga H, et al. Characterization of hyperintense plaque with noncontrast T1-weighted cardiovascular magnetic resonance coronary plaque imaging: comparison with multislice computed tomography and intravascular ultrasound. J Am Coll Cardiol Img. 2009;2:720–8.CrossRef
7.
go back to reference Jansen CHP, Perera D, Makowski MR, Wiethoff AJ, Phinikaridou A, Razavi RM, et al. Detection of intracoronary Thrombus by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 2011;124:416–24.CrossRefPubMed Jansen CHP, Perera D, Makowski MR, Wiethoff AJ, Phinikaridou A, Razavi RM, et al. Detection of intracoronary Thrombus by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 2011;124:416–24.CrossRefPubMed
8.
go back to reference Schreiber WG, Schmitt M, Kalden P, Mohrs OK, Kreitner KF, Thelen M. Dynamic contrast-enhanced myocardial perfusion imaging using saturation-prepared TrueFISP. J Magn Reson Imaging. 2002;16:641–52.CrossRefPubMed Schreiber WG, Schmitt M, Kalden P, Mohrs OK, Kreitner KF, Thelen M. Dynamic contrast-enhanced myocardial perfusion imaging using saturation-prepared TrueFISP. J Magn Reson Imaging. 2002;16:641–52.CrossRefPubMed
9.
go back to reference Schmitt P, Griswold AM, Jakob MP, Kotas M, Gulani V, Flentje M, et al. Inversion Recovery TrueFISP: Quantification of T1, T2, and Spin Density. Magn Reson Med. 2004;51:661-667.CrossRefPubMed Schmitt P, Griswold AM, Jakob MP, Kotas M, Gulani V, Flentje M, et al. Inversion Recovery TrueFISP: Quantification of T1, T2, and Spin Density. Magn Reson Med. 2004;51:661-667.CrossRefPubMed
10.
go back to reference Katoh M, Spuentrup E, Buecker A, Schaeffter T, Stuber M. MRI of coronary vessel walls using radial k-space sampling and steady-state free precession imaging. Am J Roentgenol. 2006;186:S401–6.CrossRef Katoh M, Spuentrup E, Buecker A, Schaeffter T, Stuber M. MRI of coronary vessel walls using radial k-space sampling and steady-state free precession imaging. Am J Roentgenol. 2006;186:S401–6.CrossRef
11.
go back to reference Gibson CM, Sandor T, Stone PH, Pasternak Rcrosner B, Sacks FM. Quantitative angiographic and statistical methods to assess serial changes in coronary luminal diameter and implications for atherosclerosis regression trials. Am J Cardiol. 1992;69:1286–90.CrossRefPubMed Gibson CM, Sandor T, Stone PH, Pasternak Rcrosner B, Sacks FM. Quantitative angiographic and statistical methods to assess serial changes in coronary luminal diameter and implications for atherosclerosis regression trials. Am J Cardiol. 1992;69:1286–90.CrossRefPubMed
12.
go back to reference Spuentrup E, Bornert P, Botnar RM, Groen JP, Manning WJ, Stuber M. Navigator-gated free-breathing three-dimensional balanced fast field echo (TrueFISP) coronary magnetic resonance angiography. Invest Radiol. 2002;37:637–42.CrossRefPubMed Spuentrup E, Bornert P, Botnar RM, Groen JP, Manning WJ, Stuber M. Navigator-gated free-breathing three-dimensional balanced fast field echo (TrueFISP) coronary magnetic resonance angiography. Invest Radiol. 2002;37:637–42.CrossRefPubMed
13.
go back to reference Brittan JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization- prepared T2 contrast. Magn Reeson Med. 1995;33:689–96.CrossRef Brittan JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization- prepared T2 contrast. Magn Reeson Med. 1995;33:689–96.CrossRef
14.
go back to reference Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ. Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology. 1999;212:579–87.CrossRefPubMed Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ. Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology. 1999;212:579–87.CrossRefPubMed
15.
go back to reference Look D, Locker D. Time saving measurement of NMR and EPR relaxation times. Rev Sci Instrum. 1970;41:250–1.CrossRef Look D, Locker D. Time saving measurement of NMR and EPR relaxation times. Rev Sci Instrum. 1970;41:250–1.CrossRef
16.
go back to reference Weinmann HJ, Schuhmann-Giampieri G, Schmitt-Willich H, Vogler H, Frenzel T, Gries H. A new lipophilic gadolinium chelate as a tissue-specific contrast medium for MRI. Magn Reson Med. 1991;22:233–7. discussion 42.CrossRefPubMed Weinmann HJ, Schuhmann-Giampieri G, Schmitt-Willich H, Vogler H, Frenzel T, Gries H. A new lipophilic gadolinium chelate as a tissue-specific contrast medium for MRI. Magn Reson Med. 1991;22:233–7. discussion 42.CrossRefPubMed
17.
go back to reference Price AN, Cheung KK, Lim SY. Rapid assessment of myocardial infarct size in rodents using multi-slice inversion recovery late gadolinium enhancement CMR at 9.4 T. J Cardiovasc Magn Reson. 2011;13:1–9.CrossRef Price AN, Cheung KK, Lim SY. Rapid assessment of myocardial infarct size in rodents using multi-slice inversion recovery late gadolinium enhancement CMR at 9.4 T. J Cardiovasc Magn Reson. 2011;13:1–9.CrossRef
Metadata
Title
Non-contrast coronary artery wall and plaque imaging using inversion-recovery prepared steady-state free precession
Authors
Takeshi Ishimoto
Yasuyo Taniguchi
Tosiaki Miyati
Momoe Kawakami
Masaru Ishihara
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2015
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-015-0071-2

Other articles of this Issue 1/2015

BMC Medical Imaging 1/2015 Go to the issue