Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2020

Open Access 01-12-2020 | Technical advance

Assessing risk of bias: a proposal for a unified framework for observational studies and randomized trials

Authors: Hendrika J. Luijendijk, Matthew J. Page, Huibert Burger, Xander Koolman

Published in: BMC Medical Research Methodology | Issue 1/2020

Login to get access

Abstract

Background

Evidence based medicine aims to integrate scientific evidence, clinical experience, and patient values and preferences. Individual health care professionals need to appraise the evidence from randomized trials and observational studies when guidelines are not yet available. To date, tools for assessment of bias and terminologies for bias are specific for each study design. Moreover, most tools appeal only to methodological knowledge to detect bias, not to subject matter knowledge, i.e. in-depth medical knowledge about a topic. We propose a unified framework that enables the coherent assessment of bias across designs.

Methods

Epidemiologists traditionally distinguish between three types of bias in observational studies: confounding, information bias, and selection bias. These biases result from a common cause, systematic error in the measurement or common effect of the intervention and outcome respectively. We applied this conceptual framework to randomized trials and show how it can be used to identify bias. The three sources of bias were illustrated with graphs that visually represent researchers’ assumptions about the relationships between the investigated variables (causal diagrams).

Results

Critical appraisal of evidence started with the definition of the research question in terms of the population of interest, the compared interventions and the main outcome. Next, we used causal diagrams to illustrate how each source of bias can lead to over- or underestimated treatment effects. Then, we discussed how randomization, blinded outcome measurement and intention-to-treat analysis minimize bias in trials. Finally, we identified study aspects that can only be appraised with subject matter knowledge, irrespective of study design.

Conclusions

The unified framework encompassed the three main sources of bias for the effect of an assigned intervention on an outcome. It facilitated the integration of methodological and subject matter knowledge in the assessment of bias. We hope that graphical diagrams will help clarify debate among professionals by reducing misunderstandings based on different terminology for bias.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ebell MH, Sokol R, Lee A, Simons C, Early J. How good is the evidence to support primary care practice? Evid Based Med. 2017;22(3):88–92.PubMed Ebell MH, Sokol R, Lee A, Simons C, Early J. How good is the evidence to support primary care practice? Evid Based Med. 2017;22(3):88–92.PubMed
2.
go back to reference Institute of Medicine. Learning what works best: the nation’s need for evidence on comparative effectiveness in health care. Washington, DC: National Academies Press; 2007. Institute of Medicine. Learning what works best: the nation’s need for evidence on comparative effectiveness in health care. Washington, DC: National Academies Press; 2007.
3.
go back to reference Maggio LA, Tannery NH, Chen HC, ten Cate O, O’Brien B. Evidence-based medicine training in undergraduate medical education: a review and critique of the literature published 2006–2011. Acad Med. 2013;88(7):1022–8.PubMed Maggio LA, Tannery NH, Chen HC, ten Cate O, O’Brien B. Evidence-based medicine training in undergraduate medical education: a review and critique of the literature published 2006–2011. Acad Med. 2013;88(7):1022–8.PubMed
4.
go back to reference Jadad A, Moore R, Carroll D, Jenkinson C, Reynolds D, Gavaghan D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12.PubMed Jadad A, Moore R, Carroll D, Jenkinson C, Reynolds D, Gavaghan D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12.PubMed
5.
go back to reference Sterne J, Savović J, Page M, Elbers R, Blencowe N, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.PubMed Sterne J, Savović J, Page M, Elbers R, Blencowe N, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.PubMed
6.
go back to reference Hong Q, Fàbregues S, Bartlett G, Boardman F, Cargo M, Dagenais P, et al. The Mixed Methods Appraisal Tool (MMAT) version 2018. Information professionals and researchers. Educ Inf (Special Issue). 2018:0–10. Hong Q, Fàbregues S, Bartlett G, Boardman F, Cargo M, Dagenais P, et al. The Mixed Methods Appraisal Tool (MMAT) version 2018. Information professionals and researchers. Educ Inf (Special Issue). 2018:0–10.
7.
go back to reference Sterne JAC, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. Sterne JAC, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.
8.
go back to reference Corbett MS, Higgins JPT, Woolacott NF. Assessing baseline imbalance in randomised trials: implications for the Cochrane risk of bias tool. Res Synth Methods. 2014;5:79–85.PubMed Corbett MS, Higgins JPT, Woolacott NF. Assessing baseline imbalance in randomised trials: implications for the Cochrane risk of bias tool. Res Synth Methods. 2014;5:79–85.PubMed
9.
go back to reference Hong Q, Fàbregues S, Bartlett G, Boardman F, Cargo M, Dagenais P, et al. The Mixed Methods Appraisal Tool (MMAT) version 2018 for information professionals and researchers. Education for Information. 2018;34(4):285–291. Hong Q, Fàbregues S, Bartlett G, Boardman F, Cargo M, Dagenais P, et al. The Mixed Methods Appraisal Tool (MMAT) version 2018 for information professionals and researchers. Education for Information. 2018;34(4):285–291.
10.
go back to reference Pearl J, Glymour MM, Jewell NP. Causal inference in statistics: a primer. Hoboken: Wiley; 2016. Pearl J, Glymour MM, Jewell NP. Causal inference in statistics: a primer. Hoboken: Wiley; 2016.
11.
go back to reference Rothman KJ, Greenland S, Lash TL. Modern Epidemiology third Philadelphia: LWW; 2008. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology third Philadelphia: LWW; 2008.
12.
go back to reference Schwartz S, Campbell UB, Gatto NM, Gordon K. Toward a clarification of the taxonomy of “Bias” in epidemiology textbooks. Epidemiology. 2015;26(2):216–22.PubMedCrossRef Schwartz S, Campbell UB, Gatto NM, Gordon K. Toward a clarification of the taxonomy of “Bias” in epidemiology textbooks. Epidemiology. 2015;26(2):216–22.PubMedCrossRef
13.
go back to reference Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol. 2002;155(2):176–84.PubMedCrossRef Hernán MA, Hernández-Díaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol. 2002;155(2):176–84.PubMedCrossRef
14.
go back to reference Chavalarias D, Ioannidis JPA. Science mapping analysis characterizes 235 biases in biomedical research. J Clin Epidemiol. 2010;63(11):1205–15. Chavalarias D, Ioannidis JPA. Science mapping analysis characterizes 235 biases in biomedical research. J Clin Epidemiol. 2010;63(11):1205–15.
15.
go back to reference Hernán MA, Taubman SL. Does obesity shorten life ? The importance of well-defined interventions to answer causal questions. Int J Obes (Lond). 2008;32:S8–14.CrossRef Hernán MA, Taubman SL. Does obesity shorten life ? The importance of well-defined interventions to answer causal questions. Int J Obes (Lond). 2008;32:S8–14.CrossRef
16.
go back to reference Luijendijk HJ, De Bruin NC, Hulshof TA, Koolman X. Terminal illness and the increased mortality risk of conventional antipsychotics in observational studies: a systematic review. Pharmacoepidemiol Drug Saf. 2016;25(2):113–22.PubMedCrossRef Luijendijk HJ, De Bruin NC, Hulshof TA, Koolman X. Terminal illness and the increased mortality risk of conventional antipsychotics in observational studies: a systematic review. Pharmacoepidemiol Drug Saf. 2016;25(2):113–22.PubMedCrossRef
17.
go back to reference Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration; 2011. Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration; 2011.
18.
go back to reference Efird J. Blocked randomization with randomly selected block sizes. Int J Env Res Public Heal. 2011;8(1):15–20.CrossRef Efird J. Blocked randomization with randomly selected block sizes. Int J Env Res Public Heal. 2011;8(1):15–20.CrossRef
19.
go back to reference Berger VW, Weinstein S. Ensuring the comparability of comparison groups: is randomization enough? Control Clin Trials. 2004;25(5):515–24.PubMedCrossRef Berger VW, Weinstein S. Ensuring the comparability of comparison groups: is randomization enough? Control Clin Trials. 2004;25(5):515–24.PubMedCrossRef
20.
go back to reference Altman DG, Doré CJ. Randomisation and baseline comparisons in clinical trials. Lancet. 1990;335(8682):149–53.PubMed Altman DG, Doré CJ. Randomisation and baseline comparisons in clinical trials. Lancet. 1990;335(8682):149–53.PubMed
21.
go back to reference Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. J Clin Epidemiol. 2010;63(2):142–53.PubMed Austin PC, Manca A, Zwarenstein M, Juurlink DN, Stanbrook MB. A substantial and confusing variation exists in handling of baseline covariates in randomized controlled trials: a review of trials published in leading medical journals. J Clin Epidemiol. 2010;63(2):142–53.PubMed
22.
go back to reference Luijendijk HJ, Hulshof TA. Baseline differences in the SAVOR trial. Diabetes Obes Metab. 2015;17(12):1202.PubMed Luijendijk HJ, Hulshof TA. Baseline differences in the SAVOR trial. Diabetes Obes Metab. 2015;17(12):1202.PubMed
23.
go back to reference Clark L, Fairhurst C, Hewitt CE, Birks Y, Brabyn S, Cockayne S, et al. A methodological review of recent meta-analyses has found significant heterogeneity in age between randomized groups. J Clin Epidemiol. 2014;67(9):1016–24.PubMed Clark L, Fairhurst C, Hewitt CE, Birks Y, Brabyn S, Cockayne S, et al. A methodological review of recent meta-analyses has found significant heterogeneity in age between randomized groups. J Clin Epidemiol. 2014;67(9):1016–24.PubMed
24.
go back to reference Clark L, Fairhurst C, Cook E, Torgerson DJ. Important outcome predictors showed greater baseline heterogeneity than age in two systematic reviews. J Clin Epidemiol. 2015;68(2):175–81.PubMed Clark L, Fairhurst C, Cook E, Torgerson DJ. Important outcome predictors showed greater baseline heterogeneity than age in two systematic reviews. J Clin Epidemiol. 2015;68(2):175–81.PubMed
25.
go back to reference Trowman R, Dumville JC, Torgerson DJ, Cranny G. The impact of trial baseline imbalances should be considered in systematic reviews: a methodological case study. J Clin Epidemiol. 2007;60(12):1229–33.PubMed Trowman R, Dumville JC, Torgerson DJ, Cranny G. The impact of trial baseline imbalances should be considered in systematic reviews: a methodological case study. J Clin Epidemiol. 2007;60(12):1229–33.PubMed
26.
go back to reference Berger V. A review of methods for ensuring the comparability of comparison groups in randomized clinical trials. Rev Recent Clin Trials. 2008;1(1):81–6. Berger V. A review of methods for ensuring the comparability of comparison groups in randomized clinical trials. Rev Recent Clin Trials. 2008;1(1):81–6.
27.
go back to reference Baethge C, Assall OP, Baldessarini RJ. Systematic review of blinding assessment in randomized controlled trials in schizophrenia and affective disorders 2000-2010. Psychother Psychosom. 2013;82(3):152–60.PubMed Baethge C, Assall OP, Baldessarini RJ. Systematic review of blinding assessment in randomized controlled trials in schizophrenia and affective disorders 2000-2010. Psychother Psychosom. 2013;82(3):152–60.PubMed
28.
go back to reference Hernán MA, Hernández-díaz S, Robins JM. A Structural Approach to Selection Bias. Epidemiology. 2004;15(5):615–25.PubMed Hernán MA, Hernández-díaz S, Robins JM. A Structural Approach to Selection Bias. Epidemiology. 2004;15(5):615–25.PubMed
29.
go back to reference Cipriani A, Barbui C, Rendell J, Geddes JR. Clinical and regulatory implications of active run-in phases in long-term studies for bipolar disorder. Acta Psychiatr Scand. 2014;129(5):328–42.PubMed Cipriani A, Barbui C, Rendell J, Geddes JR. Clinical and regulatory implications of active run-in phases in long-term studies for bipolar disorder. Acta Psychiatr Scand. 2014;129(5):328–42.PubMed
30.
go back to reference Pablos-Méndez A, Barr RG, Shea S. Run-in periods in randomized trials: implications for the application of results in clinical practice. JAMA. 1998;279(3):222–5.PubMed Pablos-Méndez A, Barr RG, Shea S. Run-in periods in randomized trials: implications for the application of results in clinical practice. JAMA. 1998;279(3):222–5.PubMed
31.
go back to reference Affuso O, Kaiser KA, Carson TL, Ingram KH, Schwiers M, Robertson H, et al. Association of run-in periods with weight loss in obesity randomized controlled trials. Obes Rev. 2014;15(1):68–73.PubMed Affuso O, Kaiser KA, Carson TL, Ingram KH, Schwiers M, Robertson H, et al. Association of run-in periods with weight loss in obesity randomized controlled trials. Obes Rev. 2014;15(1):68–73.PubMed
32.
go back to reference Danaei G, Tavakkoli M, Hernan MA. Systematic Reviews and Meta- and Pooled Analyses Bias in Observational Studies of Prevalent Users: Lessons for Comparative Effectiveness Research From a Meta-Analysis of Statins. Am J Epidemiol. 2012;175(4):250–62.PubMedPubMedCentral Danaei G, Tavakkoli M, Hernan MA. Systematic Reviews and Meta- and Pooled Analyses Bias in Observational Studies of Prevalent Users: Lessons for Comparative Effectiveness Research From a Meta-Analysis of Statins. Am J Epidemiol. 2012;175(4):250–62.PubMedPubMedCentral
33.
go back to reference Hernán MA, Alonso A, Logan R, Grodstein F, Michels KB, Stampfer MJ, et al. Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease. Epidemiology. 2013;19(6):766–79. Hernán MA, Alonso A, Logan R, Grodstein F, Michels KB, Stampfer MJ, et al. Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease. Epidemiology. 2013;19(6):766–79.
34.
go back to reference Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D, et al. Illustrating bias due to conditioning on a collider. Int J Epidemiol. 2010;39(2):417–20.PubMed Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D, et al. Illustrating bias due to conditioning on a collider. Int J Epidemiol. 2010;39(2):417–20.PubMed
35.
go back to reference de Haas EC, Luijendijk HJ. Baloxavir for influenza: enrichment obscured lack of effect in north-American adults. Eur J Intern Med. 2019;62(March):e8–9. de Haas EC, Luijendijk HJ. Baloxavir for influenza: enrichment obscured lack of effect in north-American adults. Eur J Intern Med. 2019;62(March):e8–9.
36.
go back to reference Groenwold RHH, Moons KGM, Vandenbroucke JP. Randomized trials with missing outcome data: how to analyze and what to report. Cmaj. 2014;186(15):1153–7.PubMedPubMedCentralCrossRef Groenwold RHH, Moons KGM, Vandenbroucke JP. Randomized trials with missing outcome data: how to analyze and what to report. Cmaj. 2014;186(15):1153–7.PubMedPubMedCentralCrossRef
37.
go back to reference Montedori A, Bonacini MI, Casazza G, Luchetta ML, Duca P, Cozzolino F, et al. Modified versus standard intention-to-treat reporting: are there differences in methodological quality, sponsorship, and findings in randomized trials? A cross-sectional study. Trials. 2011;12(1):58.PubMedPubMedCentralCrossRef Montedori A, Bonacini MI, Casazza G, Luchetta ML, Duca P, Cozzolino F, et al. Modified versus standard intention-to-treat reporting: are there differences in methodological quality, sponsorship, and findings in randomized trials? A cross-sectional study. Trials. 2011;12(1):58.PubMedPubMedCentralCrossRef
38.
go back to reference Mansournia MA, Higgins JPT, Sterne JAC, Hernán MA. Biases in randomized trials. A conversation between Trialists and epidemiologists. Epidemiology. 2017;28(1):54–9.PubMedPubMedCentralCrossRef Mansournia MA, Higgins JPT, Sterne JAC, Hernán MA. Biases in randomized trials. A conversation between Trialists and epidemiologists. Epidemiology. 2017;28(1):54–9.PubMedPubMedCentralCrossRef
Metadata
Title
Assessing risk of bias: a proposal for a unified framework for observational studies and randomized trials
Authors
Hendrika J. Luijendijk
Matthew J. Page
Huibert Burger
Xander Koolman
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2020
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-020-01115-7

Other articles of this Issue 1/2020

BMC Medical Research Methodology 1/2020 Go to the issue