Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2019

Open Access 01-12-2019 | Care | Research article

Incorporating repeated measurements into prediction models in the critical care setting: a framework, systematic review and meta-analysis

Authors: Joost D. J. Plate, Rutger R. van de Leur, Luke P. H. Leenen, Falco Hietbrink, Linda M. Peelen, M. J. C. Eijkemans

Published in: BMC Medical Research Methodology | Issue 1/2019

Login to get access

Abstract

Background

The incorporation of repeated measurements into multivariable prediction research may greatly enhance predictive performance. However, the methodological possibilities vary widely and a structured overview of the possible and utilized approaches lacks. Therefore, we [1] propose a structured framework for these approaches, [2] determine what methods are currently used to incorporate repeated measurements in prediction research in the critical care setting and, where possible, [3] assess the added discriminative value of incorporating repeated measurements.

Methods

The proposed framework consists of three domains: the observation window (static or dynamic), the processing of the raw data (raw data modelling, feature extraction and reduction) and the type of modelling. A systematic review was performed to identify studies which incorporate repeated measurements to predict (e.g. mortality) in the critical care setting. The within-study difference in c-statistics between models with versus without repeated measurements were obtained and pooled in a meta-analysis.

Results

From the 2618 studies found, 29 studies incorporated multiple repeated measurements. The annual number of studies with repeated measurements increased from 2.8/year (2000–2005) to 16.0/year (2016–2018). The majority of studies that incorporated repeated measurements for prediction research used a dynamic observation window, and extracted features directly from the data. Differences in c statistics ranged from − 0.048 to 0.217 in favour of models that utilize repeated measurements.

Conclusions

Repeated measurements are increasingly common to predict events in the critical care domain, but their incorporation is lagging. A framework of possible approaches could aid researchers to optimize future prediction models.
Appendix
Available only for authorised users
Literature
1.
go back to reference Harrell FE. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. New York: Springer-Verlag New York, Inc.; 2001.CrossRef Harrell FE. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. New York: Springer-Verlag New York, Inc.; 2001.CrossRef
2.
go back to reference Ghosh D, Zhu Y, Coffman DL. Penalized regression procedures for variable selection in the potential outcomes framework. Stat Med. 2015;34(10):1645–58.PubMedPubMedCentralCrossRef Ghosh D, Zhu Y, Coffman DL. Penalized regression procedures for variable selection in the potential outcomes framework. Stat Med. 2015;34(10):1645–58.PubMedPubMedCentralCrossRef
3.
4.
5.
go back to reference Moreno RP, Metnitz PGH, Almeida E, Jordan B, Bauer P, Abizanda Campos R, Iapichino G, Edbrooke E, Capuzzo M, Le Gall JR. SAPS 3—from evaluation of the patient to evaluation of the intensive care unit. Part 2: development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005;31:1345–55.PubMedPubMedCentralCrossRef Moreno RP, Metnitz PGH, Almeida E, Jordan B, Bauer P, Abizanda Campos R, Iapichino G, Edbrooke E, Capuzzo M, Le Gall JR. SAPS 3—from evaluation of the patient to evaluation of the intensive care unit. Part 2: development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005;31:1345–55.PubMedPubMedCentralCrossRef
6.
go back to reference Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute physiology and chronic health evaluation (APACHE) IV: hospital mortality assessment for today's critically ill patients. Crit Care Med. 2006;34(5):1297–310.PubMedCrossRef Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute physiology and chronic health evaluation (APACHE) IV: hospital mortality assessment for today's critically ill patients. Crit Care Med. 2006;34(5):1297–310.PubMedCrossRef
7.
go back to reference Lee J, Mark R. A hypotensive episode predictor for intensive care based on heart rate and blood pressure time series. Comput Cardiol (2010). 2011;2010:81–4. Lee J, Mark R. A hypotensive episode predictor for intensive care based on heart rate and blood pressure time series. Comput Cardiol (2010). 2011;2010:81–4.
8.
go back to reference Levin SR, Harley ET, Fackler JC, Lehmann CU, Custer JW, France D, Zeger SL. Real-time forecasting of pediatric intensive care unit length of stay using computerized provider orders. Crit Care Med. 2012;40(11):3058–64.PubMedCrossRef Levin SR, Harley ET, Fackler JC, Lehmann CU, Custer JW, France D, Zeger SL. Real-time forecasting of pediatric intensive care unit length of stay using computerized provider orders. Crit Care Med. 2012;40(11):3058–64.PubMedCrossRef
9.
go back to reference Anderson JR, Cain KC, Gelber RD. Analysis of Survival by Tumor Response. J Clin Oncol. 1983;1(11):710.PubMedCrossRef Anderson JR, Cain KC, Gelber RD. Analysis of Survival by Tumor Response. J Clin Oncol. 1983;1(11):710.PubMedCrossRef
10.
go back to reference Rizopoulos D. Joint models for longitudinal and time-to-event data: with applications in R. Boca Raton: CRC Press; 2012.CrossRef Rizopoulos D. Joint models for longitudinal and time-to-event data: with applications in R. Boca Raton: CRC Press; 2012.CrossRef
11.
go back to reference Calvert JS, Price DA, Barton CW, Chettipally UK, Das R. Discharge recommendation based on a novel technique of homeostatic analysis. J Am Med Inform Assoc. 2017;24(1):24–9.PubMedCrossRef Calvert JS, Price DA, Barton CW, Chettipally UK, Das R. Discharge recommendation based on a novel technique of homeostatic analysis. J Am Med Inform Assoc. 2017;24(1):24–9.PubMedCrossRef
12.
go back to reference Fisher LD, Lin DY. Time-dependent covariates in the cox proportional hazards regression model. Annu Rev Public Health. 1999;20:145–57.CrossRefPubMed Fisher LD, Lin DY. Time-dependent covariates in the cox proportional hazards regression model. Annu Rev Public Health. 1999;20:145–57.CrossRefPubMed
15.
go back to reference Goldstein BA, Navar AM, Pencina MJ, Ioannidis JPA. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc. 2017;24(1):198–208.PubMedCrossRef Goldstein BA, Navar AM, Pencina MJ, Ioannidis JPA. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc. 2017;24(1):198–208.PubMedCrossRef
16.
go back to reference Debray TP, Damen JA, Snell KI, Ensor J, Hooft L, Reitsma JB, Riley RD, Moons KG. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017;356:i6460.PubMedCrossRef Debray TP, Damen JA, Snell KI, Ensor J, Hooft L, Reitsma JB, Riley RD, Moons KG. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017;356:i6460.PubMedCrossRef
17.
go back to reference Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, Reitsma JB, Kleijnen J, Mallett S. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med. 2019;170(1):51.PubMedCrossRef Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, Reitsma JB, Kleijnen J, Mallett S. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med. 2019;170(1):51.PubMedCrossRef
18.
go back to reference Hanley J, McNeil B. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.PubMedCrossRef Hanley J, McNeil B. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.PubMedCrossRef
19.
go back to reference Newcombe RG. Confidence intervals for an effect size measure based on the Mann-Whitney statistic. Part 2: asymptotic methods and evaluation. Stat Med. 2006;25(4):559–73.PubMedCrossRef Newcombe RG. Confidence intervals for an effect size measure based on the Mann-Whitney statistic. Part 2: asymptotic methods and evaluation. Stat Med. 2006;25(4):559–73.PubMedCrossRef
20.
go back to reference Thorndike RL. Regression fallacies in the matched groups experiment. Psychometrika. 1942;7(2):85.CrossRef Thorndike RL. Regression fallacies in the matched groups experiment. Psychometrika. 1942;7(2):85.CrossRef
21.
go back to reference Plate JD, Peelen LM, Leenen LL, Hietbrink F. Validation of the vitalpac early warning score at the intermediate care unit. World J Crit Care Med. 2018;7(3):39 In press.PubMedPubMedCentralCrossRef Plate JD, Peelen LM, Leenen LL, Hietbrink F. Validation of the vitalpac early warning score at the intermediate care unit. World J Crit Care Med. 2018;7(3):39 In press.PubMedPubMedCentralCrossRef
23.
go back to reference Cochran W. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.CrossRef Cochran W. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.CrossRef
24.
go back to reference R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
25.
go back to reference Debray TP, de Jong V. Metamisc: diagnostic and prognostic meta-analysis. R package version 0.1.9; 2018. Debray TP, de Jong V. Metamisc: diagnostic and prognostic meta-analysis. R package version 0.1.9; 2018.
26.
go back to reference Gordon M, Lumley T. Forestplot: advanced forest plot using ‘grid’ graphics. R package version 1.7; 2017. Gordon M, Lumley T. Forestplot: advanced forest plot using ‘grid’ graphics. R package version 1.7; 2017.
27.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG. (2009) TPG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):926.CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. (2009) TPG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):926.CrossRef
28.
go back to reference Cancio LC, Galvez E Jr, Turner CE, Kypreos NG, Parker A, Holcomb JB. Base deficit and alveolar-arterial gradient during resuscitation contribute independently but modestly to the prediction of mortality after burn injury. J Burn Care Res. 2006;27(3):289–96 discussion 96.PubMedCrossRef Cancio LC, Galvez E Jr, Turner CE, Kypreos NG, Parker A, Holcomb JB. Base deficit and alveolar-arterial gradient during resuscitation contribute independently but modestly to the prediction of mortality after burn injury. J Burn Care Res. 2006;27(3):289–96 discussion 96.PubMedCrossRef
29.
go back to reference Cheng CW, Wang MD. Improving personalized clinical risk prediction based on causality-based association rules. the ACM Conference on Bioinformatics. Comput Biol Biomed. 2015;2015:386–92. Cheng CW, Wang MD. Improving personalized clinical risk prediction based on causality-based association rules. the ACM Conference on Bioinformatics. Comput Biol Biomed. 2015;2015:386–92.
30.
go back to reference Ghose S, Mitra J, Khanna S, Dowling J. An improved patient-specific mortality risk prediction in ICU in a random Forest classification framework. Stud Health Technol Inform. 2015;214:56–61.PubMed Ghose S, Mitra J, Khanna S, Dowling J. An improved patient-specific mortality risk prediction in ICU in a random Forest classification framework. Stud Health Technol Inform. 2015;214:56–61.PubMed
31.
go back to reference Last M, Tosas O, Gallo Cassarino T, Kozlakidis Z, Edgeworth J. Evolving classification of intensive care patients from event data. Artif Intell Med. 2016;69:22–32.PubMedCrossRef Last M, Tosas O, Gallo Cassarino T, Kozlakidis Z, Edgeworth J. Evolving classification of intensive care patients from event data. Artif Intell Med. 2016;69:22–32.PubMedCrossRef
32.
go back to reference Minne L, Toma T, de Jonge E, Abu-Hanna A. Assessing and combining repeated prognosis of physicians and temporal models in the intensive care. Artif Intell Med. 2013;57:111–7.PubMedCrossRef Minne L, Toma T, de Jonge E, Abu-Hanna A. Assessing and combining repeated prognosis of physicians and temporal models in the intensive care. Artif Intell Med. 2013;57:111–7.PubMedCrossRef
33.
go back to reference Rivera-Fernandez R, Castillo-Lorente E, Nap R, Vazquez-Mata G, Reis Miranda D. Relationship between mortality and first-day events index from routinely gathered physiological variables in ICU patients medicine intensiva. Med Int. 2012;36(9):634–43. Rivera-Fernandez R, Castillo-Lorente E, Nap R, Vazquez-Mata G, Reis Miranda D. Relationship between mortality and first-day events index from routinely gathered physiological variables in ICU patients medicine intensiva. Med Int. 2012;36(9):634–43.
34.
go back to reference Stein DM, Hu PF, Chen HH, Yang S, Stansbury LG, Scalea TM. Computational gene mapping to analyze continuous automated physiologic monitoring data in neuro-trauma intensive care. J Trauma Acute Care Surg. 2012;73(2):419–24 discussion 24.PubMedCrossRef Stein DM, Hu PF, Chen HH, Yang S, Stansbury LG, Scalea TM. Computational gene mapping to analyze continuous automated physiologic monitoring data in neuro-trauma intensive care. J Trauma Acute Care Surg. 2012;73(2):419–24 discussion 24.PubMedCrossRef
35.
go back to reference Timsit JF, Fosse JP, Troche G, De Lassence A, Alberti C, Garrouste-Orgeas M, Azoulay E, Chevret S, Moine P, Cohen Y. Accuracy of a composite score using daily SAPS II and LOD scores for predicting hospital mortality in ICU patients hospitalized for more than 72 h. Intensive Care Med. 2001;27(6):1012–21.PubMedCrossRef Timsit JF, Fosse JP, Troche G, De Lassence A, Alberti C, Garrouste-Orgeas M, Azoulay E, Chevret S, Moine P, Cohen Y. Accuracy of a composite score using daily SAPS II and LOD scores for predicting hospital mortality in ICU patients hospitalized for more than 72 h. Intensive Care Med. 2001;27(6):1012–21.PubMedCrossRef
36.
go back to reference Toma T, Bosman RJ, Siebes A, Peek N, Abu-Hanna A. Learning predictive models that use pattern discovery--a bootstrap evaluative approach applied in organ functioning sequences. J Biomed Inform. 2010;43(4):578–86.PubMedCrossRef Toma T, Bosman RJ, Siebes A, Peek N, Abu-Hanna A. Learning predictive models that use pattern discovery--a bootstrap evaluative approach applied in organ functioning sequences. J Biomed Inform. 2010;43(4):578–86.PubMedCrossRef
37.
go back to reference Wang Y, Chen W, Heard K, Kollef MH, Bailey TC, Cui Z, He Y, Lu C, Chen Y. Mortality Prediction in ICUs Using A Novel Time-Slicing Cox Regression Method. American Med Inform Assoc. 2015;2015:1289–95. Wang Y, Chen W, Heard K, Kollef MH, Bailey TC, Cui Z, He Y, Lu C, Chen Y. Mortality Prediction in ICUs Using A Novel Time-Slicing Cox Regression Method. American Med Inform Assoc. 2015;2015:1289–95.
38.
go back to reference Calvert JS, Price DA, Chettipally UK, Barton CW, Feldman MD, Hoffman JL, Jay M, Das R. A computational approach to early sepsis detection. Comput Biol Med. 2016;74:69–73.PubMedCrossRef Calvert JS, Price DA, Chettipally UK, Barton CW, Feldman MD, Hoffman JL, Jay M, Das R. A computational approach to early sepsis detection. Comput Biol Med. 2016;74:69–73.PubMedCrossRef
39.
go back to reference Kam HJ, Kim HY. Learning representations for the early detection of sepsis with deep neural networks. Comput Biol Med. 2017;89:248–55.PubMedCrossRef Kam HJ, Kim HY. Learning representations for the early detection of sepsis with deep neural networks. Comput Biol Med. 2017;89:248–55.PubMedCrossRef
40.
go back to reference Ghosh S, Li J, Cao L, Ramamohanarao K. Septic shock prediction for ICU patients via coupled HMM walking on sequential contrast patterns. J Biomed Inform. 2017;66:19–31.PubMedCrossRef Ghosh S, Li J, Cao L, Ramamohanarao K. Septic shock prediction for ICU patients via coupled HMM walking on sequential contrast patterns. J Biomed Inform. 2017;66:19–31.PubMedCrossRef
41.
go back to reference Verplancke T, Van Looy S, Steurbaut K, Benoit D, De Turck F, De Moor G, Decruyenaere J. A novel time series analysis approach for prediction of dialysis in critically ill patients using echo-state networks. BMC Med Inform Decis Mak. 2010;10:4.PubMedPubMedCentralCrossRef Verplancke T, Van Looy S, Steurbaut K, Benoit D, De Turck F, De Moor G, Decruyenaere J. A novel time series analysis approach for prediction of dialysis in critically ill patients using echo-state networks. BMC Med Inform Decis Mak. 2010;10:4.PubMedPubMedCentralCrossRef
42.
go back to reference Wu M, Ghassemi M, Feng M, Celi LA, Szolovits P, Doshi-Velez F. Understanding vasopressor intervention and weaning: risk prediction in a public heterogeneous clinical time series database. J Am Med Inform Assoc. 2017;24(3):488–95.PubMed Wu M, Ghassemi M, Feng M, Celi LA, Szolovits P, Doshi-Velez F. Understanding vasopressor intervention and weaning: risk prediction in a public heterogeneous clinical time series database. J Am Med Inform Assoc. 2017;24(3):488–95.PubMed
43.
go back to reference Cuthbertson BH, Boroujerdi M, McKie L, Aucott L, Prescott G. Can physiological variables and early warning scoring systems allow early recognition of the deteriorating surgical patient? Crit Care Med. 2007;35(2):402–9.PubMedCrossRef Cuthbertson BH, Boroujerdi M, McKie L, Aucott L, Prescott G. Can physiological variables and early warning scoring systems allow early recognition of the deteriorating surgical patient? Crit Care Med. 2007;35(2):402–9.PubMedCrossRef
44.
go back to reference Chaparro JA, Giraldo BF, Caminal P, Benito S. Analysis of the respiratory pattern variability of patients in weaning process using autoregressive modeling techniques. 33rd Ann Int Conf IEEE EMBS. 2011;52:5690–3. Chaparro JA, Giraldo BF, Caminal P, Benito S. Analysis of the respiratory pattern variability of patients in weaning process using autoregressive modeling techniques. 33rd Ann Int Conf IEEE EMBS. 2011;52:5690–3.
45.
go back to reference Crump C, Saxena S, Wilson B, Farrell P, Rafiq A, Silvers CT. Using Bayesian networks and rule-based trending to predict patient status in the intensive care unit. AMIA 2009 Symposium Proceedings. 2009;2009:124. Crump C, Saxena S, Wilson B, Farrell P, Rafiq A, Silvers CT. Using Bayesian networks and rule-based trending to predict patient status in the intensive care unit. AMIA 2009 Symposium Proceedings. 2009;2009:124.
46.
go back to reference Ebadollahi S, Sun J, Gotz D, Hu J, Sow D, Neti C. Predicting Patient’s Trajectory of Physiological Data using Temporal Trends in Similar Patients: A System for Near-Term Prognostics. American Med Inform Assoc. 2010;2010:192–6. Ebadollahi S, Sun J, Gotz D, Hu J, Sow D, Neti C. Predicting Patient’s Trajectory of Physiological Data using Temporal Trends in Similar Patients: A System for Near-Term Prognostics. American Med Inform Assoc. 2010;2010:192–6.
47.
48.
go back to reference Kennedy CE, Aoki N, Mariscalco M, Turley JP. Using time series analysis to predict cardiac arrest in a PICU. Pediatr Crit Care Med. 2015;16(9):e332–9.PubMedPubMedCentralCrossRef Kennedy CE, Aoki N, Mariscalco M, Turley JP. Using time series analysis to predict cardiac arrest in a PICU. Pediatr Crit Care Med. 2015;16(9):e332–9.PubMedPubMedCentralCrossRef
49.
go back to reference Guiza F, Depreitere B, Piper I, Van den Berghe G, Meyfroidt G. Novel methods to predict increased intracranial pressure during intensive care and long-term neurologic outcome after traumatic brain injury: development and validation in a multicenter dataset. Neurologic Critical Care. 2013;41(2):554–64. Guiza F, Depreitere B, Piper I, Van den Berghe G, Meyfroidt G. Novel methods to predict increased intracranial pressure during intensive care and long-term neurologic outcome after traumatic brain injury: development and validation in a multicenter dataset. Neurologic Critical Care. 2013;41(2):554–64.
50.
go back to reference Saria S, Rajani AK, Gould J, Koller D, Penn AA. Integration of early physiological responses predicts later illness severity in preterm infants. Sci Transl Med. 2010;2(48):48ra65.PubMedPubMedCentralCrossRef Saria S, Rajani AK, Gould J, Koller D, Penn AA. Integration of early physiological responses predicts later illness severity in preterm infants. Sci Transl Med. 2010;2(48):48ra65.PubMedPubMedCentralCrossRef
51.
go back to reference Tjepkema-Cloostermans MC, Hofmeijer J, Beishuizen A, Hom HW, Blans MJ, Bosch FH, Van Putten MJAM. Cerebral recovery index: reliable help for prediction of neurologic outcome after cardiac arrest. Crit Care Med. 2017;45(8):e789–e97.PubMedCrossRef Tjepkema-Cloostermans MC, Hofmeijer J, Beishuizen A, Hom HW, Blans MJ, Bosch FH, Van Putten MJAM. Cerebral recovery index: reliable help for prediction of neurologic outcome after cardiac arrest. Crit Care Med. 2017;45(8):e789–e97.PubMedCrossRef
52.
go back to reference Megjhani M, Terilli K, Frey HP, Velazquez AG, Doyle KW, Connolly ES, Roh DJ, Agarwal S, Claassen J, Elhadad N, Park S. Incorporating high-frequency physiologic data using computational dictionary learning improves prediction of delayed cerebral ischemia compared to existing methods. Front Neurol. 2018;9:122.PubMedPubMedCentralCrossRef Megjhani M, Terilli K, Frey HP, Velazquez AG, Doyle KW, Connolly ES, Roh DJ, Agarwal S, Claassen J, Elhadad N, Park S. Incorporating high-frequency physiologic data using computational dictionary learning improves prediction of delayed cerebral ischemia compared to existing methods. Front Neurol. 2018;9:122.PubMedPubMedCentralCrossRef
53.
go back to reference Pereira RD, Salgado CM, Dejam A, Reti SR, Vieira SM, Sousa JM, Celi LA, Finkelstein SN. Fuzzy modeling to predict severely depressed left ventricular ejection fraction following admission to the intensive care unit using clinical physiology. Sci World J. 2015;2015:212703.CrossRef Pereira RD, Salgado CM, Dejam A, Reti SR, Vieira SM, Sousa JM, Celi LA, Finkelstein SN. Fuzzy modeling to predict severely depressed left ventricular ejection fraction following admission to the intensive care unit using clinical physiology. Sci World J. 2015;2015:212703.CrossRef
54.
go back to reference Welten M, de Kroon MLA, Renders CM, Steyerberg EW, Raat H, Twisk JWR, Heymans MW. Repeatedly measured predictors: a comparison of methods for prediction modeling. Diag Prog Res. 2018;2(1):5.CrossRef Welten M, de Kroon MLA, Renders CM, Steyerberg EW, Raat H, Twisk JWR, Heymans MW. Repeatedly measured predictors: a comparison of methods for prediction modeling. Diag Prog Res. 2018;2(1):5.CrossRef
55.
go back to reference Chen YH, Ferguson KK, Meeker JD, McElrath TF, Mukherjee B. Statistical methods for modeling repeated measures of maternal environmental exposure biomarkers during pregnancy in association with preterm birth. Environ Health. 2015;14(1):9.PubMedPubMedCentralCrossRef Chen YH, Ferguson KK, Meeker JD, McElrath TF, Mukherjee B. Statistical methods for modeling repeated measures of maternal environmental exposure biomarkers during pregnancy in association with preterm birth. Environ Health. 2015;14(1):9.PubMedPubMedCentralCrossRef
56.
go back to reference Silva I, Moody G, Scott DJ, Celi LA, Mark RG. Predicting In-Hospital Mortality of ICU Patients: The PhysioNet/Computing in Cardiology Challenge 2012. Comput Cardiol (2010). 2012;39:245–8. Silva I, Moody G, Scott DJ, Celi LA, Mark RG. Predicting In-Hospital Mortality of ICU Patients: The PhysioNet/Computing in Cardiology Challenge 2012. Comput Cardiol (2010). 2012;39:245–8.
58.
go back to reference Choi J, Anderson SJ, Richards TJ, Thompson WK. Prediction of transplant-free survival in idiopathic pulmonary fibrosis patients using joint models for event times and mixed multivariate longitudinal data. J Appl Stat. 2014;41(10):2192–205.PubMedPubMedCentralCrossRef Choi J, Anderson SJ, Richards TJ, Thompson WK. Prediction of transplant-free survival in idiopathic pulmonary fibrosis patients using joint models for event times and mixed multivariate longitudinal data. J Appl Stat. 2014;41(10):2192–205.PubMedPubMedCentralCrossRef
Metadata
Title
Incorporating repeated measurements into prediction models in the critical care setting: a framework, systematic review and meta-analysis
Authors
Joost D. J. Plate
Rutger R. van de Leur
Luke P. H. Leenen
Falco Hietbrink
Linda M. Peelen
M. J. C. Eijkemans
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Care
Published in
BMC Medical Research Methodology / Issue 1/2019
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-019-0847-0

Other articles of this Issue 1/2019

BMC Medical Research Methodology 1/2019 Go to the issue