Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2019

Open Access 01-12-2019 | Septicemia | Database

Veterans Affairs patient database (VAPD 2014–2017): building nationwide granular data for clinical discovery

Authors: Xiao Qing Wang, Brenda M. Vincent, Wyndy L. Wiitala, Kaitlyn A. Luginbill, Elizabeth M. Viglianti, Hallie C. Prescott, Theodore J. Iwashyna

Published in: BMC Medical Research Methodology | Issue 1/2019

Login to get access

Abstract

Background

To study patient physiology throughout a period of acute hospitalization, we sought to create accessible, standardized nationwide data at the level of the individual patient-facility-day. This methodology paper summarizes the development, organization, and characteristics of the Veterans Affairs Patient Database 2014–2017 (VAPD 2014–2017). The VAPD 2014–2017 contains acute hospitalizations from all parts of the nationwide VA healthcare system with daily physiology including clinical data (labs, vitals, medications, risk scores, etc.), intensive care unit (ICU) indicators, facility, patient, and hospitalization characteristics.

Methods

The VA data structure and database organization represents a complex multi-hospital system. We define a single-site hospitalization as one or more consecutive stays with an acute treating specialty at a single facility. The VAPD 2014–2017 is structured at the patient-facility-day level, where every patient-day in a hospital is a row with separate identification variables for facility, patient, and hospitalization. The VAPD 2014–2017 includes daily laboratory, vital signs, and inpatient medication. Such data were validated and verified through lab value range and comparison with patient charts. Sepsis, risk scores, and organ dysfunction definitions were standardized and calculated.

Results

We identified 565,242 single-site hospitalizations (SSHs) in 2014; 558,060 SSHs in 2015; 553,961 SSHs in 2016; and 550,236 SSHs in 2017 at 141 VA hospitals. The average length of stay was four days for all study years. In-hospital mortality decreased from 2014 to 2017 (1.7 to 1.4%), 30-day readmission rates increased from 15.3% in 2014 to 15.6% in 2017; 30-day mortality also decreased from 4.4% in 2014 to 4.1% in 2017. From 2014 to 2017, there were 107,512 (4.8%) of SSHs that met the Center for Disease Control and Prevention’s Electronic Health Record-based retrospective definition of sepsis.

Conclusion

The VAPD 2014–2017 represents a large, standardized collection of granular data from a heterogeneous nationwide healthcare system. It is also a direct resource for studying the evolution of inpatient physiology during both acute and critical illness.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kim MM, Barnato AE, Angus DC, Fleisher LA, Kahn JM. The effect of multidisciplinary care teams on intensive care unit mortality. Arch Intern Med. 2010;170(4):369–76.CrossRef Kim MM, Barnato AE, Angus DC, Fleisher LA, Kahn JM. The effect of multidisciplinary care teams on intensive care unit mortality. Arch Intern Med. 2010;170(4):369–76.CrossRef
2.
go back to reference Wunsch H, Kramer A, Gershengorn HB. Validation of intensive care and mechanical ventilation codes in Medicare data. Crit Care Med. 2017;45(7):e711–4.CrossRef Wunsch H, Kramer A, Gershengorn HB. Validation of intensive care and mechanical ventilation codes in Medicare data. Crit Care Med. 2017;45(7):e711–4.CrossRef
3.
go back to reference Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA. 2014;311(13):1308–16.CrossRef Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA. 2014;311(13):1308–16.CrossRef
4.
go back to reference Johnson AEW, Pollard TJ, Shen L, L-wH L, Feng M, Ghassemi M, Moody B, Szolovits P, Anthony Celi L, Mark RG. MIMIC-III, a freely accessible critical care database. Scientific Data. 2016;3:160035.CrossRef Johnson AEW, Pollard TJ, Shen L, L-wH L, Feng M, Ghassemi M, Moody B, Szolovits P, Anthony Celi L, Mark RG. MIMIC-III, a freely accessible critical care database. Scientific Data. 2016;3:160035.CrossRef
7.
go back to reference Fihn SD, Francis J, Clancy C, Nielson C, Nelson K, Rumsfeld J, Cullen T, Bates J, Graham GL. Insights from advanced analytics at the veterans health administration. Health Aff (Millwood). 2014;33(7):1203–11.CrossRef Fihn SD, Francis J, Clancy C, Nielson C, Nelson K, Rumsfeld J, Cullen T, Bates J, Graham GL. Insights from advanced analytics at the veterans health administration. Health Aff (Millwood). 2014;33(7):1203–11.CrossRef
9.
go back to reference US Department of Veterans Affairs. 172VA10P2: VHA Corporate Data Warehouse, VA. 79 FR 4377. US Department of Veterans Affairs. 172VA10P2: VHA Corporate Data Warehouse, VA. 79 FR 4377.
10.
go back to reference Wiitala WL,Vincent BM, Burns JA, Prescott HC, Waljee A, Cohen GR, Iwashyna TJ. Variation in laboratory naming conventions in EHRs within and between hospitals: a nationwide longitudinal study. Med Care. 2019;57(4):e22–27. Wiitala WL,Vincent BM, Burns JA, Prescott HC, Waljee A, Cohen GR, Iwashyna TJ. Variation in laboratory naming conventions in EHRs within and between hospitals: a nationwide longitudinal study. Med Care. 2019;57(4):e22–27.
11.
go back to reference Vincent BM, Wiitala WL, Burns JA, Iwashyna TJ, Prescott HC. Using veterans affairs corporate data warehouse to identify 30-day hospital readmissions. Health Services Outcomes Research Methodology. 2018;18(3):143–54.CrossRef Vincent BM, Wiitala WL, Burns JA, Iwashyna TJ, Prescott HC. Using veterans affairs corporate data warehouse to identify 30-day hospital readmissions. Health Services Outcomes Research Methodology. 2018;18(3):143–54.CrossRef
14.
go back to reference Iwashyna TJ, Odden A, Rohde J, Bonham C, Kuhn L, Malani P, Chen L, Flanders S. Identifying patients with severe sepsis using administrative claims: patient-level validation of the angus implementation of the international consensus conference definition of severe sepsis. Med Care. 2014;52(6):e39–43.CrossRef Iwashyna TJ, Odden A, Rohde J, Bonham C, Kuhn L, Malani P, Chen L, Flanders S. Identifying patients with severe sepsis using administrative claims: patient-level validation of the angus implementation of the international consensus conference definition of severe sepsis. Med Care. 2014;52(6):e39–43.CrossRef
15.
go back to reference Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10.CrossRef Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10.CrossRef
16.
go back to reference Rhee C, Dantes R, Epstein L, Murphy DJ, Seymour CW, Iwashyna TJ, Kadri SS, Angus DC, Danner RL, Fiore AE, et al. Incidence and trends of Sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA. 2017;318(13):1241–9.CrossRef Rhee C, Dantes R, Epstein L, Murphy DJ, Seymour CW, Iwashyna TJ, Kadri SS, Angus DC, Danner RL, Fiore AE, et al. Incidence and trends of Sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA. 2017;318(13):1241–9.CrossRef
18.
go back to reference Prescott HC, Cope TM, Gesten FC, Ledneva TA, Friedrich ME, Iwashyna TJ, Osborn TM, Seymour CW, Levy MM. Reporting of Sepsis cases for performance measurement versus for reimbursement in New York state. Crit Care Med. 2018;46(5):666–73.CrossRef Prescott HC, Cope TM, Gesten FC, Ledneva TA, Friedrich ME, Iwashyna TJ, Osborn TM, Seymour CW, Levy MM. Reporting of Sepsis cases for performance measurement versus for reimbursement in New York state. Crit Care Med. 2018;46(5):666–73.CrossRef
19.
go back to reference Render ML, Deddens J, Freyberg R, Almenoff P, Connors AF Jr, Wagner D, Hofer TP. Veterans affairs intensive care unit risk adjustment model: validation, updating, recalibration. Crit Care Med. 2008;36(4):1031–42.CrossRef Render ML, Deddens J, Freyberg R, Almenoff P, Connors AF Jr, Wagner D, Hofer TP. Veterans affairs intensive care unit risk adjustment model: validation, updating, recalibration. Crit Care Med. 2008;36(4):1031–42.CrossRef
20.
go back to reference Prescott HC, Kepreos KM, Wiitala WL, Iwashyna TJ. Temporal changes in the influence of hospitals and regional healthcare networks on severe Sepsis mortality. Crit Care Med. 2015;43(7):1368–74.CrossRef Prescott HC, Kepreos KM, Wiitala WL, Iwashyna TJ. Temporal changes in the influence of hospitals and regional healthcare networks on severe Sepsis mortality. Crit Care Med. 2015;43(7):1368–74.CrossRef
21.
go back to reference Vincent JL, de Mendonca A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med. 1998;26(11):1793–800.CrossRef Vincent JL, de Mendonca A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med. 1998;26(11):1793–800.CrossRef
22.
go back to reference Investigators N-SS, Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.CrossRef Investigators N-SS, Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.CrossRef
23.
go back to reference Chen LM, Martin CM, Morrison TL, Sibbald WJ. Interobserver variability in data collection of the APACHE II score in teaching and community hospitals. Crit Care Med. 1999;27(9):1999–2004.CrossRef Chen LM, Martin CM, Morrison TL, Sibbald WJ. Interobserver variability in data collection of the APACHE II score in teaching and community hospitals. Crit Care Med. 1999;27(9):1999–2004.CrossRef
24.
go back to reference Paul E, Bailey M, Pilcher D. Risk prediction of hospital mortality for adult patients admitted to Australian and New Zealand intensive care units: development and validation of the Australian and New Zealand risk of death model. J Crit Care. 2013;28(6):935–41.CrossRef Paul E, Bailey M, Pilcher D. Risk prediction of hospital mortality for adult patients admitted to Australian and New Zealand intensive care units: development and validation of the Australian and New Zealand risk of death model. J Crit Care. 2013;28(6):935–41.CrossRef
25.
go back to reference Pilcher D, Paul E, Bailey M, Huckson S. The Australian and New Zealand risk of death (ANZROD) model: getting mortality prediction right for intensive care units. Crit Care Resusc. 2014;16(1):3–4.PubMed Pilcher D, Paul E, Bailey M, Huckson S. The Australian and New Zealand risk of death (ANZROD) model: getting mortality prediction right for intensive care units. Crit Care Resusc. 2014;16(1):3–4.PubMed
26.
go back to reference Nuti SV, Qin L, Rumsfeld JS, Ross JS, Masoudi FA, Normand SL, Murugiah K, Bernheim SM, Suter LG, Krumholz HM. Association of Admission to veterans affairs hospitals vs non-veterans affairs hospitals with mortality and readmission rates among older men hospitalized with acute myocardial infarction, heart failure, or pneumonia. JAMA. 2016;315(6):582–92.CrossRef Nuti SV, Qin L, Rumsfeld JS, Ross JS, Masoudi FA, Normand SL, Murugiah K, Bernheim SM, Suter LG, Krumholz HM. Association of Admission to veterans affairs hospitals vs non-veterans affairs hospitals with mortality and readmission rates among older men hospitalized with acute myocardial infarction, heart failure, or pneumonia. JAMA. 2016;315(6):582–92.CrossRef
27.
go back to reference Viglianti EM, Iwashyna TJ. Toward the ideal ratio of patients to intensivists: finding a reasonable balance. JAMA Intern Med. 2017;177(3):396–8.CrossRef Viglianti EM, Iwashyna TJ. Toward the ideal ratio of patients to intensivists: finding a reasonable balance. JAMA Intern Med. 2017;177(3):396–8.CrossRef
Metadata
Title
Veterans Affairs patient database (VAPD 2014–2017): building nationwide granular data for clinical discovery
Authors
Xiao Qing Wang
Brenda M. Vincent
Wyndy L. Wiitala
Kaitlyn A. Luginbill
Elizabeth M. Viglianti
Hallie C. Prescott
Theodore J. Iwashyna
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2019
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-019-0740-x

Other articles of this Issue 1/2019

BMC Medical Research Methodology 1/2019 Go to the issue